1000 resultados para GENETIC
Resumo:
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
Resumo:
To establish a molecular-marker-assisted system of breeding and genetic study for Laminaria japonica Aresch., amplified fragment length polymorphism (AFLP) was used to construct a genetic linkage map of L. japonica featuring 230 progeny of F-2 cross population. Eighteen primer combinations produced 370 polymorphic loci and 215 polymorphic loci segregated in a 3:1 Mendelian segregation ratio (P <= 0.05). Of the 215 segregated loci, 142 were ordered into 27 linkage groups. The length of the linkage groups ranged from 6.7 to 90.3 centimorgans (cM) with an average length of 49.6 cM, and the total length was 1,085.8 cM, which covered 68.4% of the estimated 1,586.9 cM genome. The number of mapped markers on each linkage group ranged from 2 to 12, averaging 5.3 markers per group. The average density of the markers was 1 per 9.4 cM. Based on the marker density and the resolution of the map, the constructed linkage map can satisfy the need for quantitative trait locus (QTL) location and molecular-marker-assisted breeding for Laminaria.
Resumo:
The haploid stage of gametophytes of the subtidal brown alga Undaria pinnatifida can be vegetatively propagated under favorable conditions. This unique characteristic makes it possible to establish independent gametophyte cell lines that are zoospore-derived. Sporophytic offspring can be generated through hybridizing the male and female gametophytes, which are derived from different cell lines. Accumulated experiences in this and other species in Laminariales demonstrated the applicability of this novel way to breed desired strains for open-sea cultivation. Sporophytic offspring originated from mono-crossing of male and female gametophyte clones were shown to have similar morphological characteristics under identical ambient conditions. However, there has been no report to relate this similarity on molecular levels. In this report, amplified fragment length polymorphism (AFLP) and microsatellite markers were used to analyze the genetic identity of sporophytic offspring of U. pinnatifida originated from two mono-crossing lines (M1 and M2), two self-breeding lines (S1 and S2) and one wild population (W). Totally 318 AFLP loci were revealed by use of 11 primer sets, of which 4.7%, 0.3%, 17.9%, 16.4% and 36.5% were polymorphic in M1, M2, S1, S2 and W, respectively. The pairwise genetic identity among the individuals of the same line was assessed. It was shown that offspring from mono-crossing lines had a higher degree of identity (95.6-100%) than self-breeding lines (87.7-98.4%) and the wild population (81.5-92.1%). Analysis by use of six microsatellite loci also revealed a higher genetic identity among individuals of the mono-crossing line, further confirming the results of AFLP analysis. Results from this investigation support, on molecular levels, the novel way to produce and maintain strains in U. pinnatifida by use of different gametophyte cell lines.
Resumo:
Aims: To investigate the species-specific prevalence of vhhP2 among Vibrio harveyi isolates and the applicability of vhhP2 in the specific detection of V. harveyi from crude samples of animal and environmental origins. Methods and Results: A gene (vhhP2) encoding an outer membrane protein of unknown function was identified from a pathogenic V. harveyi isolate. vhhP2 is present in 24 V. harveyi strains isolated from different geographical locations but is absent in 24 strains representing 17 different non-V. harveyi species, including V. parahaemolyticus and V. alginolyticus. A simple polymerase chain reaction method for the identification of V. harveyi was developed based on the conserved sequence of vhhP2. This method was demonstrated to be applicable to the quick detection of V. harveyi from crude animal specimens and environmental samples. The specificity of this method was tested by applying it to the examination of two strains of V. campbellii, which is most closely related to V. harveyi. One of the V. campbellii strains was falsely identified as V. harveyi. Conclusions: vhhP2 is ubiquitously present in the V. harveyi species and is absent in most of the non-V. harveyi species; this feature enables vhhP2 to serve as a genetic marker for the rapid identification of V. harveyi. However, this method can not distinguish some V. campbellii strains from V. harveyi. Significance and Impact of the Study: the significance of our study is the identification of a novel gene of V. harveyi and the development of a simple method for the relatively accurate detection of V. harveyi from animal specimens and environmental samples.
Resumo:
Zhikong scallop (Chlamys farreri Jones et Preston 1904) is one of the most important aquaculture species in China. The development of a genetic linkage map would provide a powerful tool for the genetic improvement of this species. Amplified fragment length polymorphism (AFLP) is a PCR-based technique that has proven to be powerful in genome fingerprinting and mapping, and population analysis. Genetic maps of C. farreri were constructed using AFLP markers and a full-sib family with 60 progeny. A total of 503 segregating AFLP markers were obtained, with 472 following the Mendelian segregation ratio of 1:1 and 31 markers showing significant (P< 0.05) segregation distortion. The male map contained 166 informative AFLP markers in 23 linkage groups covering 2468 cM. The average distance between markers was 14.9 cM. The female genetic map consisted of 198 markers in 25 linkage groups spanning 3130 cM with an average inter-marker spacing of 15.8 cM. DNA polymorphisms that segregated in a 3:1 ratio as well as the AFLP markers that were heterozygous in both parents were included to construct combined linkage genetic map. Five shared linkage groups, ranging from 61.1 to 162.5 cM, were identified between the male and female maps, covering 431 cM. Amplified fragment length polymorphism markers appeared to be evenly distributed within the linkage groups. Although preliminary, these maps provide a starting point for the mapping of the functional genes and quantitative trait loci in C. farreri.
Resumo:
The bay scallop (Argopecten irradians irradians Lamarck 1819) has become one of the most important aquaculture species in China. Genetic improvement of cultured bay scallop can benefit greatly from a better understanding of its genome. In this study, we developed amplified fragment length polymorphisms (AFLPs) and simple sequence repeat markers from expressed sequence tags (EST-SSRs) for linkage analysis in bay scallop. Segregation of 390 AFLP and eight SSR markers was analysed in a mapping population of 97 progeny. Of the AFLP markers analysed, 326 segregated in the expected 1:1 Mendelian ratio, while the remaining 74 (or 19.0%) showed significant deviation, with 33 (44.6%) being deficient in heterozygotes (A/a). Among the eight polymorphic EST-SSR loci, one marker (12.5%) was found skewing from its expected Mendelian ratios. Eighteen per cent of the markers segregating from female parent were distorted compared with 21% of the markers segregating from male parent. The female map included 147 markers in 17 linkage groups (LGs) and covered 1892.4 cM of the genome. In the male map, totally 146 AFLP and SSR markers were grouped in 18 LGs spanning 1937.1 cM. The average inter-marker spacing in female and male map was 12.9 and 13.3 cM respectively. The AFLP and SSR markers were distributed evenly throughout the genome except for a few large gaps over 20 cM. Although preliminary, the genetic maps presented here provide a starting point for the mapping of the bay scallop genome.
Resumo:
The population genetic structure of the crimson snapper Lutjanus erythropterus in East Asia was examined with a 427-bp hypervariable portion of the mtDNA control region. A total of 262 samples were collected and 75 haplotypes were obtained. Neutrality tests (Tajima's and Fu's) suggested that Lutjanus erythropterus in East Asia had experienced a bottleneck followed by population expansion since the late Pleistocene. Despite the low phylogeographic structures in mtDNA haplotypes, a hierarchical examination of populations in 11 localities from four geographical regions using analysis of molecular variance (AMOVA) indicated significant genetic differentiation among regions (Phi(CT) = 0.08564, p < 0.01). Limited gene flow between the eastern region (including a locality in the western Pacific Ocean and two localities in the East Sea) and three geographic regions of the South China Sea largely contributed to the genetic subdivision. However, comparisons among three geographic regions of the South China Sea showed little to no genetic difference. Populations of Lutjanus erythropterus in East Asia are inferred to be divided into two major groups: an eastern group, including populations of the western Pacific Ocean and the East Sea, and a South China Sea group, consisting of populations from northern Malaysia to South China. The results suggest that fishery management should reflect the genetic differentiation and diversity in East Asia. (c) 2006 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
Molluscan shells may display a variety of colors, which formation, inheritance, and evolutionary significance are not Well understood. Here we report a new variant of the Pacific abalone Haliotis discus hannai that displays a novel orange shell coloration (O-type) that is clearly distinguishable from the Wild green-shelled abalone (G-type). Controlled mating experiments between O- and G-type abalones demonstrated apparent Mendelian segregations (1:1 or 3:1) in shell colors in F-2 families, which support the notion that the O- and G-types are under strict genetic control at a single locus With a recessive o (for orange shell) allele and a dominant G (for green shell) allele. Feeding with different diets caused modifications of shell color within each genotype, ranging from orange to yellow for O-type and green to dark-brown for the G-type, without affecting the distinction between genotypes. A previously described bluish-purple (B-type) shell color was found in one of the putative oo X oG crosses, suggesting that the B-type may be it recessive allele belonging to the same locus. The new O-type variant had no effect on the growth of Pacific abalone on the early seed-stage. This Study demonstrates that shell color in Pacific abalone is subject to genetic control as well as dietary modification, and the latter probably offers selective advantages in camouflage and predator avoidance.
Resumo:
TX01, a pathogenic Edwardsiella tarda strain isolated from diseased fish at an epidemic-inflicted fish farm in China, exhibits resistance to multiple classes of antimicrobial agents. The genes (kn(R). catA3, and tet(A), respectively) encoding resistance to kanamycin, chloramphenicol, and tetracycline were cloned and found to be 99-100% identical to the corresponding genes carried by known plasmids and transposons of human, animal, and environmental isolates. Further study demonstrated that TX01 harbors a plasmid, pETX, which proved to be (i) the carrier of the tet and cut operons; (ii) a mobile genetic element that is capable of transferring between bacteria of different genera. These results, which, to our knowledge, documented for the first time the co-existence of chloramphenicol and tetracycline resistance determinants on a conjugative plasmid in a pathogenic E tarda strain, indicated that gene acquisition via horizontal transferring of pETX-like mobile genetic entities may have played an important part in the dissemination of antimicrobial resistance and that there have existed for some time widespread genetic exchanges between bacteria of human, animal/fish, and environmental origins. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Interspecific reciprocal crosses between the two flatfishes Paralichthys olivaceus and P. dentatus yielded hybrids with different viabilities. Specifically, the hybrids of P. olivaceus female and P. dentatus male (HI) were found to be viable, while the reciprocal hybrids from P. dentatus female and P. olivaceus male (HII) were completely inviable. All the HII individuals showed morphological deformities and died before first feeding. The chromosome analysis showed that HI individuals had the same chromosome number as parents. However, two chromosomes were missing in HII offspring indicating that the latter were aneuploids. Genomic inheritance from the parents to F-1 progeny was also examined by amplified fragment length polymorphism (AFLP) analyses, and the results showed differences between reciprocal hybrids. Almost all AFLP bands (97.71%) observed in parents were passed on to HI individuals. In contrast, only 86.64% of the AFLP bands from parents were scored in HII individuals. Frequency of lost parental bands was thus significantly higher in HII than that in HI and intraspecific crosses, which was probably associated with chromosomal elimination. In addition, higher segregation distortions were found in hybrids than in controls, although these differences were not significant. The present study indicates that chromosomal elimination and loss of AFLP loci occurred in inviable HII individuals, while such genomic changes were not found in viable HI individuals. Possible implications of such difference on genomic changes for asymmetric viability in reciprocal hybrids are discussed.
Resumo:
Heritabilities and genetic and phenotypic correlations were estimated for body weight, test diameter, and test height of the sea urchin from measurements on progeny resulting from 11 sires and 33 dams by artificial fertilization of 3 females by single males, and measurements at 8, 10, and 12 months after metamorphism. Point estimate for heritabilities based on the sire components of variance were moderate to high for body weight (0.21-0.49), test diameter (0.21-0.47), and test height (0.22-0.37). Genetic correlations were significant for body weight with test diameter (0.30similar to0.65) and test height (0.30similar to0.54) and test diameter with test height (0.31similar to0.65). Genetic correlation estimates, derived the nested design and half-sib correlation analysis used in this study, appear to provide reliable estimates. Significant phenotypic correlations were found for body weight with test diameter (0.82similar to0.86) and test height (0.49similar to0.83), and test diameter with test height (0.47similar to0.84). The phenotypic correlations for test height with body weight (0.491) and test diameter (0.467) at 12 months' of age were smaller than those earlier sampling periods.(C) 2004 Published by Elsevier B.V.
Resumo:
Inter-simple sequence repeat (ISSR) analysis was used to assess genetic diversity among 10 pairs of male and female Laminaria gametophytes. A total of 58 amplification loci was obtained from 10 selected ISSR primers, of which 34 revealed polymorphism among the gametophytes. Genetic distances were calculated with the Dice coefficient ranging from 0.006 to 0.223. A dendrogram based on the unweighted pair-group method arithmetic (UPGMA) average showed that most male and female gametophytes of the same species were clustered together and that 10 pairs of gametophytes were divided into four groups. This was generally consistent with the taxonomic categories. The main group consisted of six pairs of gametophytes, which were selected from Laminaria japonica Aresch. by intensive inbreeding through artificial hybridization. One specific marker was cloned, but was not converted successfully into a sequence characterized amplified region (SCAR) marker. Our results demonstrate the feasibility of applying ISSR markers to evaluate Laminaria germplasm diversities.
Resumo:
Zhikong scallop (Chlamys farreri) is an economically important aquaculture species in China; however, frequent mass mortality seriously affects the development of its industry. Genetic linkage map is useful for genetic improvement and selective breeding of C. farreri. Linkage maps were constructed using an intraspecific F-1 cross and amplified fragment length polymorphism (AFLP) markers. Thirty-two selected AFLP primer combinations produced 545 AFLP markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 166 were mapped to 19 linkage groups of the female framework map, covering a total of 1503.9 cM, with an average marker spacing of 10.2 cM; and 197 markers were assigned to 20 linkage groups of the male map, covering a total of 1630.7 cM, with 9.2 cM per marker. A sex-linked marker was mapped on the female map with zero recombination and a LOD of 27.3. The genetic length of C farreri genome was estimated as 1889.0 cM for the female and 1995.9 cM for the male. The coverage of the framework map was calculated as 79.6% for the female and 81.7% for the male. When the triplets and doublets were considered, the observed length of the map was calculated as 1610.2 cM with coverage of 85.2% for the female, and 1880.5 cM with coverage of 94.2% for the male. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map and mapping of economically important genes. (C) 2004 Published by Elsevier B.V.
Resumo:
Progress has been made in establishing a genetic transformation model for Laminaria japonica (Phaeophyta, Laminariales). The model includes introduction of foreign genes by biolistic bombardment, use of promoter SV40 to drive gene expression, algal regeneration by parthenogenesis and selection by chloramphenicol or hygromycin.