993 resultados para G alpha olf
Resumo:
1 The effect of chronic morphine treatment (CMT) on sympathetic innervation of the mouse vas deferens and on alpha (2)-adrenoceptor mediated autoinhibition has been examined using intracellular recording of excitatory junction potentials (EJPs) and histochemistry. 2 In chronically saline treated (CST) preparations. morphine (1 muM) and the alpha (2)-adrenoceptor agonist (clonidine, 1 muM) decreased the mean amplitude of EJPs evoked with 0.03 Hz stimulation by 81+/-8% (n=16) and 92+/-6% (n=7) respectively. In CMT preparations, morphine (1 muM) and clonidine (1 muM) decreased mean EJP amplitude by 68+/-8% (n = 7) and 79+/-8% (n = 7) respectively. 3 When stimulating the sympathetic axons at 0.03 Hz. the mean EJP amplitude recorded from smooth muscles acutely withdrawn from CMT was four times greater than for CST smooth muscles (40.7+/-3.8 mV, n = 7 compared with 9.9+/-0.3 mV, n = 7). 4 Part of the increase in mean EJP amplitude following CMT was produced by a 31% increase in the density of sympathetic axons and varicosities innervating the smooth muscle. 5 Results from the present study indicate that the effectiveness of alpha (2)-adrenocrptor mediated autoinhibition is only slightly reduced in CMT preparations. Most of the cross tolerance which develops between morphine, clonidine and alpha (2)-adrenoceptor mediated autoinhibition occurs as a consequence of increased efficacy of neuromuscular transmission which is produced by an increase in the probability of transmitter release and an increase in the density of sympathetic innervation.
Resumo:
Human V alpha 24 natural killer T (V alpha 24NKT) cells are activated by -glycosylceramide-pulsed dendritic cells (DCs) in a CDld-dependent and T-cell receptor-mediated manner. There are two major subpopulations of V alpha 24NKT cells, CD4(-) CD8(-) V alpha 24NKT and CD4(+) V alpha 24NKT cells. We have recently shown that activated CD4(-) CD8 V alpha 24NKT cells have cytotoxic activity against DCs, but knowledge of the molecules responsible for cytotoxicity of V alpha 24NKT cells is currently limited. We aimed to investigate whether CD4(+) V alpha 24NKT cells also have cytotoxic activity against DCs and to determine the mechanisms underlying any observed cytotoxic activity. We demonstrated that activated CD4(+) V alpha 24NKT cells [CD40 ligand (CD40L) -positive] have cytotoxic activity against DCs (strongly CD40-positive), but not against monocytes (weakly CD40-positive) or phytohaemagglutinin blast T cells (CD40-negative), and that apoptosis of DCs significantly contributes to the observed cytotoxicity. The apoptosis of DCs following culture with activated CD4(+) V alpha 24NKT cells, but not with resting CD4(+) V alpha 24NKT cells (CD40L-negative), was partially inhibited by anti-CD40L mAb, Direct ligation of CD40 on the DCs by the anti-CD40 antibody also induced apoptosis of DCs. Our results suggest that CD40-CD40L interaction plays an important role in the induction of apoptosis of DCs following culture with activated CD4+ Va24NKT cells. The apoptosis of DCs from normal donors. triggered by the CD40-CD40L interaction, may contribute to the homeostatic regulation of the normal human immune system, preventing the interminable activation of activated CD4(+) V alpha 24NKT cells by virtue of apoptosis of DCs.
Resumo:
Human V alpha 24NKT cells are activated by alpha -galactosylceramide (alpha -GalCer)-pulsed dendritic cells in a CD1d-dependent and a T-cell receptor-mediated manner. Here, we demonstrate that CD4(+)V alpha 24NKT cells derived from a patient with acute myeloid leukemia (AML) M4 are phenotypically similar to those of healthy donors and, in common with those derived from healthy donors, express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) when the cells are activated by alpha -GalCer-pulsed dendritic cells but not prior to activation. We also show that myeloid that human activated CD4(+)V alpha 24NKT cells induced apoptosis of human leukemia cells in vivo. This is the first evidence that activated V alpha 24NKT cells express TRAIL and that TRAIL causes apoptosis of monocytic leukemia cells from patients with AML M4 in vitro and in vivo. Adoptive immune therapy with activated V alpha 24NKT cells, or other strategies to increase activated V alpha 24NKT cells in vivo, may be of benefit to patients with AML M4.
Resumo:
There is increasing evidence that heterotrimeric G-proteins (G-proteins) are involved in many plant processes including phytohormone response, pathogen defence and stomatal control. In animal systems, each of the three G-protein subunits belong to large multigene families; however, few subunits have been isolated from plants. Here we report the cloning of a second plant G-protein γ-subunit (AGG2) from Arabidopsis thaliana. The predicted AGG2 protein sequence shows 48% identity to the first identified Arabidopsis Gγ-subunit, AGG1. Furthermore, AGG2 contains all of the conserved characteristics of γ-subunits including a small size (100 amino acids, 11.1 kDa), C-terminal CAAX box and a N-terminal α-helix region capable of forming a coiled-coil interaction with the β-subunit. A strong interaction between AGG2 and both the tobacco (TGB1) and Arabidopsis (AGB1) β-subunits was observed in vivo using the yeast two-hybrid system. The strong association between AGG2 and AGB1 was confirmed in vitro. Southern and Northern analyses showed that AGG2 is a single copy gene in Arabidopsis producing two transcripts that are present in all tissues tested. The isolation of a second γ-subunit from A. thaliana indicates that plant G-proteins, like their mammalian counterparts, may form different heterotrimer combinations that presumably regulate multiple signal transduction pathways.
Resumo:
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alpha beta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alpha beta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alpha beta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin las an allosterically acting 'competitive' antagonist) binds to this residue.
Resumo:
GCR1 has been tentatively identified in Arabidopsis thaliana as the first plant G-protein coupled receptor (GPCR) (Josefsson and Rask 1997) implicated in the cytokinin sensory pathway (Plakidou-Dymock et al. 1998). A protein fusion of GCR1 and green fluorescent protein has been expressed in Arabidopsis and shown GCR1 to be located on the plasma membrane. Studies of plants with altered GCR1 expression have led us to question GCR1's involvement in cytokinin signaling. Transgenic Arabidopsis plants containing sense and antisense constructs for GCR1 have been produced and over- and under-expression confirmed. The analysis of 12 antisense and 17 sense lines has failed to reveal the previously reported Dainty phenotype or altered cytokinin sensitivity. We have used the Gauntlet approach to test the plants' response to various plant hormones although this has not yet identified a mutant phenotype. The yeast-two hybrid system has been used and so far there is no evidence to suggest GCR1 interacts with heterotrimeric G proteins. Before GCR1 can be identified as genuine G-protein coupled receptor, the identification of a ligand and a proof of association with heterotrimeric G-proteins should be obtained.
Resumo:
The pre- and postsynaptic actions of exogenously applied ATP were investigated in intact and dissociated parasympathetic neurotics of rat submandibular ganglia. Nerve-evoked excitatory postsynaptic potentials (EPSPs) were not inhibited by the purinergic receptor antagonists, suramin and pyridoxal-phosphate-6-azophenyl-2 ' ,4 ' -disulphonic acid (PPADS), or the desensitising agonist, alpha,beta -methylene ATP. In contrast. EPSPs were abolished by the nicotinic acetylcholine receptor antagonists, hexamethonium and mecamylamine. Focal application of ATP (100 muM) had no effect on membrane potential of the postsynaptic neurone or on the amplitude of spontaneous EPSPs. Taken together, these results suggest the absence of functional purinergic (P2) receptors on the postganglionic neurone in situ. In contrast, focally applied ATP (100 muM) reversibly inhibited nerve-evoked EPSPs. Similarly, bath application of the non-hydrolysable analogue of ATP, ATP gammaS, reversibly depressed EPSPs amplitude, The inhibitory effects of ATP and ATP gammaS on nerve-evoked transmitter release were antagonised by bath application of either PPADS or suramin, suggesting ATP activates a presynaptic P2 purinoceptor to inhibit acetylcholine release from preganglionic nerves in the submandibular ganglia. In acutely dissociated postganglionic neurotics from rat submandibular ganglia. focal application of ATP (100 LM) evoked an inward current and subsequent excitatory response and action potential firing, which was reversibly inhibited by PPADS (10 muM). The expression of P2X purinoceptors in wholemount and dissociated submandibular ganglion neurones was examined using polyclonal antibodies raised against the extracellular domain of six P2X purinoceptor subtypes (P2X(1-6)). In intact wholemount preparations, only the P2X(5) purinoceptor subtype was found to be expressed in the submandibular ganglion neurones and no P2X immunoreactivity was detected in the nerve fibres innervating the ganglion. Surprisingly, in dissociated submandibular ganglion neurones, high levels of P2X(2) and P2X(4) purinoceptors immunoreactivity were found on the cell surface. This increase in expression of P2X(2) and P2X(4) purinoceptors in dissociated submandibular neurones could explain the increased responsiveness of the neurotics to exogenous ATP. We conclude that disruption of ganglionic transmission in vivo by either nerve damage or synaptic blockade may up-regulate P2X expression or availability and alter neuronal excitability. (C) 2001 IBRO. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Cone snails use venom containing a cocktail of peptides ('conopeptides') to capture their prey. Many of these peptides also target mammalian receptors, often with exquisite selectivity. Here we report the discovery of two new classes of conopeptides. One class targets alpha (1)-adrenoceptors (rho -TIA from the fish-hunting Conus tulipa), and the second class targets the neuronal noradrenaline transporter (chi -MrIA and chi -MrIB from the mollusk-hunting C. marmoreus). rho -TIA and chi -MrIA selectively modulate these important membrane-bound proteins. Both peptides act as reversible non-competitive inhibitors and provide alternative avenues for the identification of inhibitor drugs.
Resumo:
Flotillin-1 was recently shown to be enriched on detergent-resistant domains of the plasma membrane called lipid rafts. These rafts, enriched in sphingolipids and cholesterol, sequester certain proteins while excluding others. Lipid rafts have been implicated in numerous cellular processes including signal transduction, membrane trafficking and molecular sorting. In this study, we demonstrate both morphologically and biochemically that lipid rafts are present on phagosomes, These structures are enriched in flotillin-1 and devoid of the main phagosomes membrane protein lysosomal-associated membrane protein (LAMP1), The flotillin-1 present on phagosomes does not originate from the plasma membrane during phagocytosis but accumulates gradually on maturing phagosomes, Treatment with bafilomycin A1, a compound that inhibits the proton pump ATPase and prevents the fusion of phagosomes with late endocytic organelles, prevents the acquisition of flotillin-1 by phagosomes, indicating that this protein might be recruited on phagosomes from endosomal organelles. A proteomic characterization of the lipid rafts of phagosomes indicates that actin, the alpha- and beta -subunits of heterotrimeric G proteins, as well as subunits of the proton pump V-ATPase are among the constituents of these domains. Remarkably, the intracellular parasite Leishmania donovani can actively inhibit the acquisition of flotillin-1-enriched lipid rafts by phagosomes and the maturation of these organelles. These results indicate that specialized functions required for phagolysosome biogenesis may occur at focal points on the phagosome membrane, and therefore represent a potential target of intracellular pathogens.
Resumo:
Several cystic fibrosis (CF) mouse models demonstrate an increased susceptibility to Pseudomonas aeruginosa lung infection, characterized by excessive inflammation and high rates of mortality. Here we developed a model of chronic P. aeruginosa lung disease in mice homozygous for the murine CF transmembrane conductance regulator G551D mutation that provides an excellent model for CF lung disease. After 3 days of infection with mucoid P. aeruginosa entrapped in agar beads, the G551D animals lost substantially more body weight than non-CF control animals and were less able to control the infection, harboring over 40-fold more bacteria in the lung. The airways of infected G551D animals contained altered concentrations of the inflammatory mediators tumor necrosis factor-alpha, KC/N51, and macrophage inflammatory protein-2 during the first 2 days of infection, suggesting that an ineffective inflammatory response is partly responsible for the clearance defect.
Resumo:
An Alu insertion polymorphism of the progesterone receptor (PR) was reported recently to be associated with a reduced risk of breast cancer, with risks of 0.8- and 0.3-fold associated with the heterozygote and homozygote genotypes, respectively. This intronic variant is considered to be in linkage disequilibrium with an exon 4 hinge region G to T Val660Leu polymorphism. We investigated whether the exon 4 PR polymorphism was associated with breast cancer in Australian women, using a population-based study of 1452 cases and 793 controls, half of whom were
Resumo:
Both antigen-specific and non-specific mechanisms may be involved in the pathogenesis of oral lichen planus (OLP). Antigen-specific mechanisms in OLP include antigen presentation by basal keratinocytes and antigen-specific keratinocyte killing by CD8(+) cytotoxic T-cells. Non-specific mechanisms include mast cell degranulation and matrix metalloproteinase (MMP) activation in OLP lesions. These mechanisms may combine to cause T-cell accumulation in the superficial lamina propria, basement membrane disruption, intra-epithelial T-cell migration, and keratinocyte apoptosis in OLP. OLP chronicity may be due, in part, to deficient antigen-specific TGF-beta1-mediated immunosuppression. The normal oral mucosa may be an immune privileged site (similar to the eye, testis, and placenta), and breakdown of immune privilege could result in OLP and possibly other autoimmune oral mucosal diseases. Recent findings in mucocutaneous graft-versus-host disease, a clinical and histological correlate of lichen planus, suggest the involvement of TNF-alpha, CD40, Fas, MMPs, and mast cell degranulation in disease pathogenesis. Potential roles for oral Langerhans cells and the regional lymphatics in OLP lesion formation and chronicity are discussed. Carcinogenesis in OLP may be regulated by the integrated signal from various tumor inhibitors (TGF-beta1, TNF-alpha, IFN-gamma, IL-12) and promoters (MIF, MMP-9). We present our recent data implicating antigen-specific and non-specific mechanisms in the pathogenesis of OLP and propose a unifying hypothesis suggesting that both may be involved in lesion development. The initial event in OLP lesion formation and the factors that determine OLP susceptibility are unknown.
Resumo:
High levels of mortality in the Mediterranean bath sponge industry have raised concerns for the future of sponge farms. Healthy sponges feed predominantly on bacteria, and many harbour a wide diversity of inter- and extra-cellular symbiotic bacteria. Here we describe the first isolation and description of a pathogenic bacterium from an infected marine sponge. Microbiological examination of tissue necrosis in the Great Barrier Reef sponge Rhopaloeides odorabile resulted in isolation of the bacterial strain NW4327. Sponges infected with strain NW4327 exhibited high levels of external tissue necrosis, and the strain was re-isolated from infected sponges. A single morphotype, which had burrowed through the collagenous spongin fibres causing severe necrosis, was observed microscopically. Strain NW4327 was capable of degrading commercial preparations of azo-collagen, providing further evidence of its involvement in spongin fibre necrosis, Strain NW4327 disrupted the microbial community associated with R. odorabile and was able to infect and kill healthy sponge tissue. 16S rRNA sequence analysis revealed that strain NW4327 is a novel member of the alpha-proteobacteria.
Resumo:
The contribution of the UV component of sunlight to the development of skin cancer is widely acknowledged, although the molecular mechanisms that are disrupted by UV radiation (UVR) resulting in the loss of normal growth controls of the epidermal stem cell keratinocytes and melanocytes is still poorly understood. alpha-Melanocyte stimulating hormone (alpha-MSH), acting via its receptor MC1, has a key role in skin pigmentation and the melanizing response after exposure to UVR. The cell cycle inhibitor p16/CDKN2A also appears to have an important function in a cell cycle checkpoint response in skin after exposure to UVR. Both of these genes have been identified as risk factors in skin cancer, MC1R variants are associated with increased risk to both melanoma and nonmelanoma skin cancers, and p16/CDKN2A with increased risk of melanoma. Here we demonstrate that the increased expression of p16 after exposure to sub-erythemal doses of UVR is potentiated by alpha-MSH, a ligand for MC1R, and this effect is mimicked by cAMP, the intracellular mediator of alpha-MSH signaling via the MC1 receptor. This link between p16 and MC1R may provide a molecular basis for the increased skin cancer risk associated with MC1R polymorphisms.