963 resultados para Functional Magnetic Resonance Imaging (fMRI)
Resumo:
Citrus sudden death (CSD) is a new disease of sweet orange and mandarin trees grafted on Rangpur lime and Citrus volkameriana rootstocks. It was first seen in Brazil in 1999, and has since been detected in more than four million trees. The CSD causal agent is unknown and the current hypothesis involves a virus similar to Citrus tristeza virus or a new virus named Citrus sudden death-associated virus. CSD symptoms include generalized foliar discoloration, defoliation and root death, and, in most cases, it can cause tree death. One of the unique characteristics of CSD disease is the presence of a yellow stain in the rootstock bark near the bud union. This region also undergoes profound anatomical changes. In this study, we analyse the metabolic disorder caused by CSD in the bark of sweet orange grafted on Rangpur lime by nuclear magnetic resonance (NMR) spectroscopy and imaging. The imaging results show the presence of a large amount of non-functional phloem in the rootstock bark of affected plants. The spectroscopic analysis shows a high content of triacylglyceride and sucrose, which may be related to phloem blockage close to the bud union. We also propose that, without knowing the causal CSD agent, the determination of oil content in rootstock bark by low-resolution NMR can be used as a complementary method for CSD diagnosis, screening about 300 samples per hour.
Resumo:
The encapsulation of magnetic transition-metal (TM) clusters inside carbon cages (fullerenes, nanotubes) has been of great interest due to the wide range of applications, which spread from medical sensors in magnetic resonance imaging to photonic crystals. Several theoretical studies have been reported; however, our atomistic understanding of the physical properties of encapsulated magnetic TM 3d clusters is far from satisfactory. In this work, we will report general trends, derived from density functional theory within the generalized gradient approximation proposed by Perdew, Burke, and Ernzerhof (PBE), for the encapsulation properties of the TMm@C-n (TM = Fe, Co, Ni; m = 2-6, n = 60,70,80,90) systems. Furthermore, to understand the role of the van der Waals corrections to the physical properties, we employed the empirical Grimme's correction (PBE + D2). We found that both PBE and PBE + D2 functionals yield almost the same geometric parameters, magnetic and electronic properties, however, PBE + D2 strongly enhances the encapsulation energy. We found that the center of mass of the TMm clusters is displaced towards the inside C-n surfaces, except for large TMm clusters (m = 5 and 6). For few cases, e. g., Co-4 and Fe-4, the encapsulation changes the putative lowest-energy structure compared to the isolated TMm clusters. We identified few physical parameters that play an important role in the sign and magnitude of the encapsulation energy, namely, cluster size, fullerene equatorial diameter, shape, curvature of the inside C-n surface, number of TM atoms that bind directly to the inside C-n surface, and the van der Waals correction. The total magnetic moment of encapsulated TMm clusters decreases compared with the isolated TMm clusters, which is expected due to the hybridization of the d-p states, and strongly depends on the size and shape of the fullerene cages.
Resumo:
Systolic right ventricular (RV) function is an important predictor in the course of various congenital and acquired heart diseases. Its practical determination by echocardiography remains challenging. We compared routine assessment of lateral tricuspid annular systolic motion velocity (TV(lat), cm/s) using pulsed-wave tissue Doppler imaging from the apical 4-chamber view with cardiac magnetic resonance (CMR) as reference method.
Resumo:
Comparison of arterial and venous coronary artery bypass flow measurements using 3-T magnetic resonance (MR) phase contrast in correlation with intraoperative Doppler flow measurements.
Resumo:
A multimodal MR study including relaxometry, diffusion tensor imaging (DTI), and MR spectroscopy was performed on patients with classical phenylketonuria (PKU) and matched controls, to improve our understanding of white matter (WM) lesions. Relaxometry yields information on myelin loss or malformation and may substantiate results from DTI attributed to myelin changes. Relaxometry was used to determine four brain compartments in normal-appearing brain tissue (NABT) and in lesions: water in myelin bilayers (myelin water, MW), water in gray matter (GM), water in WM, and water with long relaxation times (cerebrospinal fluid [CSF]-like signals). DTI yielded apparent diffusion coefficients (ADCs) and fractional anisotropies. MW and WM content were reduced in NABT and in lesions of PKU patients, while CSF-like signals were significantly increased. ADC values were reduced in PKU lesions, but also in the corpus callosum. Diffusion anisotropy was reduced in lesions because of a stronger decrease in the longitudinal than in the transverse diffusion. WM content and CSF-like components in lesions correlated with anisotropy and ADC. ADC values in lesions and in the corpus callosum correlated negatively with blood and brain phenylalanine (Phe) concentrations. Intramyelinic edema combined with vacuolization is a likely cause of the WM alterations. Correlations between diffusivity and Phe concentrations confirm vulnerability of WM to high Phe concentrations.
Resumo:
PURPOSE: To evaluate the function of the parotid glands before and during gustatory stimulation, using an intrinsic susceptibility-weighted MRI method (blood oxygenation level dependent, BOLD-MRI) at 1.5T and 3T. MATERIALS AND METHODS: A total of 10 and 13 volunteers were investigated at 1.5T and 3T, respectively. Measurements were performed before and during gustatory stimulation using ascorbate. Circular regions of interest (ROIs) were delineated in the left and right parotid glands, and in the masseter muscle for comparison. The effects of stimulation were evaluated by calculating the difference between the relaxation rates, DeltaR(2)*. Baseline and stimulation were statistically compared (Student's t-tests), merging both parotid glands. RESULTS: The averaged DeltaR(2)* values prestimulation obtained in all parotid glands were stable (-0.61 to 0.38 x 10(-3) seconds(-1)). At 3T, these values were characterized by an initial drop (to -2.7 x 10(-3) seconds(-1)) followed by a progressive increase toward the baseline. No significant difference was observed between baseline and parotid gland stimulation at 1.5T, neither for the masseter muscle at both field strengths. A considerable interindividual variability (over 76%) was noticed at both magnetic fields. CONCLUSION: BOLD-MRI at 3T was able to detect DeltaR(2)* changes in the parotid glands during gustatory stimulation, consistent with an increase in oxygen consumption during saliva production.
Resumo:
Aims To explore the impact of the functional severity of coronary artery stenosis on changes in myocardial oxygenation during pharmacological vasodilation, using oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) imaging and invasive fractional flow reserve (FFR). An FFR is considered a standard of reference for assessing haemodynamic relevance of coronary artery stenosis; yet, the relationship of FFR to changes in myocardial oxygenation during vasodilator stress and thus to an objective marker for ischaemia on the tissue level is not well understood. Methods and results We prospectively recruited 64 patients with suspected/known coronary artery disease undergoing invasive angiography. The FFR was performed in intermediate coronary artery stenosis. OS-CMR images were acquired using a T2*-sensitive sequence before and after adenosine-induced vasodilation, with myocardial segments matched to angiography. Very strict image quality criteria were defined to ensure the validity of results. The FFR was performed in 37 patients. Because of the strict image quality criteria, 41% of segments had to be excluded, leaving 29/64 patients for the blinded OS-CMR analysis. Coronary territories with an associated FFR of <0.80 showed a lack of increase in myocardial oxygenation [mean signal intensity (ΔSI) −0.49%; 95% confidence interval (CI) −3.78 to 2.78 vs. +7.30%; 95% CI 4.08 to 10.64; P < 0.001]. An FFR of <0.54 best predicted a complete lack of a vasodilator-induced oxygenation increase (sensitivity 71% and specificity 75%). An OS-CMR ΔSI <4.78% identified an FFR of <0.8 with a sensitivity of 86% and specificity of 92%. Conclusion An FFR of <0.80 is associated with a lack of an adenosine-inducible increase in oxygenation of the dependent coronary territory, while a complete lack of such an increase was best predicted by an FFR of <0.54. Further studies are warranted to identify clinically meaningful cut-off values for FFR measurements and to assess the utility of OS-CMR as an alternative clinical tool for assessing the functional relevance of coronary artery stenosis.
Resumo:
PURPOSE To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. MATERIALS AND METHODS After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. RESULTS Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). CONCLUSION Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. KEY POINTS • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.
Resumo:
The current standard for temperature sensitive imaging using magnetic resonance (MR) is 2-D, spoiled, fast gradient-echo (fGRE) phase-difference imaging exploiting temperature dependent changes in the proton resonance frequency (PRF). The echo-time (TE) for optimal sensitivity is larger than the typical repetition time (TR) of an fGRE sequence. Since TE must be less than TR in the fGRE sequence, this limits the technique's achievable sensitivity, spatial, and temporal resolution. This adversely affects both accuracy and volume coverage of the measurements. Accurate measurement of the rapid temperature changes associated with pulsed thermal therapies, such as high-intensity focused ultrasound (FUS), at optimal temperature sensitivity requires faster acquisition times than those currently available. ^ Use of fast MR acquisition strategies, such as interleaved echo-planar and spiral imaging, can provide the necessary increase in temporal performance and sensitivity while maintaining adequate signal-to-noise and in-plane spatial resolution. This research explored the adaptation and optimization of several fast MR acquisition methods for thermal monitoring of pulsed FUS thermal therapy. Temperature sensitivity, phase-difference noise and phase-difference to phase-difference-to noise ratio for the different pulse sequences were evaluated under varying imaging parameters in an agar gel phantom to establish optimal sequence parameters for temperature monitoring. The temperature sensitivity coefficient of the gel phantom was measured, allowing quantitative temperature extrapolations. ^ Optimized fast sequences were compared based on the ability to accurately monitor temperature changes at the focus of a high-intensity focused ultrasound unit, volume coverage, and contrast-to-noise ratio in the temperature maps. Operating parameters, which minimize complex phase-difference measurement errors introduced by use of the fast-imaging methods, were established. ^
Resumo:
At the forefront of cognitive neuroscience research in normal humans are the new techniques of functional brain imaging: positron emission tomography and magnetic resonance imaging. The signal used by positron emission tomography is based on the fact that changes in the cellular activity of the brain of normal, awake humans and laboratory animals are accompanied almost invariably by changes in local blood flow. This robust, empirical relationship has fascinated scientists for well over a hundred years. Because the changes in blood flow are accompanied by lesser changes in oxygen consumption, local changes in brain oxygen content occur at the sites of activation and provide the basis for the signal used by magnetic resonance imaging. The biological basis for these signals is now an area of intense research stimulated by the interest in these tools for cognitive neuroscience research.
Resumo:
Acknowledgments We thank Craig Lambert for his help in processing the MRS data. The study was funded by the Sir Jules Thorn Charitable Trust (grant ref: 05/JTA) and was supported by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre and the Biomedical Research Unit in Lewy Body Dementia based at Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust and Newcastle University and the NIHR Biomedical Research Centre and Biomedical Research Unit in Dementia based at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
Resumo:
We wish to report the detection of dimethyl sulfone (methylsulfonylmethane, C2H6O2S) in the brain of a normal 62-year-old male using in vivo proton magnetic resonance spectroscopy. The presence of this exogenous metabolite resulted from ingestion of a dietary supplement containing dimethyl sulfone. The concentration of this compound in the brain was measured to be 2.4 mmol, with a washout half life of approximately 7.5 days. The in vivo T-1 and T-2 relaxation times of dimethyl sulfone were measured to be 2180 ms and 385 ms, respectively. The concentration of major brain metabolites, namely N-acetylaspartate, total Creatine and Choline, and myo-Inositol were within normal limits. (C) 2000 Elsevier Science Inc. All rights reserved.
Resumo:
Alcoholism is highly prevalent among bipolar disorder (BD) patients, and its presence is associated with a worse outcome and refractoriness to treatment of the mood disorder. The neurobiological underpinnings that characterize this comorbidity are unknown. We sought to investigate the neurochemical profile of the dorsolateral prefrontal cortex (DLPFC) of BD patients with comorbid alcoholism. A short-TE, single-voxel (1)H spectroscopy acquisition at 1.5T from the left DLFPC of 22 alcoholic BD patients, 26 non-alcoholic BD patients and 54 healthy comparison subjects (HC) were obtained. Absolute levels of N-acetyl aspartate, phosphocreatine plus creatine, choline-containing compounds, myo-inositol, glutamate plus glutamine (Glu + Gln) and glutamate were obtained using the water signal as an internal reference. Analysis of co-variance was used to compare metabolite levels among the three groups. In the primary comparison, non-alcoholic BD patients had higher glutamate concentrations compared to alcoholic BD patients. In secondary comparisons integrating interactions between gender and alcoholism, non-alcoholic BD patients presented significantly higher glutamate plus glutamine (Glu + Gln) than alcoholic BD patients and HC. These results appeared to be driven by differences in male subjects. Alcoholic BD patients with additional drug use disorders presented significantly lower myo-inositol than BD patients with alcoholism alone. The co-occurrence of BD and alcoholism may be characterized by neurochemical abnormalities related to the glutamatergic system and to the inositol second messenger system and/or in glial pathology. These abnormalities may be the neurochemical correlate of an increased risk to develop alcoholism in BD, or of a persistently worse clinical and functional status in BD patients in remission from alcoholism, supporting the clinical recommendation that efforts should be made to prevent or early diagnose and treat alcoholism in BD patients. (C) 2009 Elsevier Ltd. All rights reserved.