957 resultados para Function Learning
Resumo:
Various differential cross-sections are measured in top-quark pair (tt¯) events produced in proton--proton collisions at a centre-of-mass energy of s√=7 TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of 4.6 fb−1. The differential cross-sections are presented in terms of kinematic variables of a top-quark proxy referred to as the pseudo-top-quark whose dependence on theoretical models is minimal. The pseudo-top-quark can be defined in terms of either reconstructed detector objects or stable particles in an analogous way. The measurements are performed on tt¯ events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a b-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the W boson produced by the top-quark decay in events with a single charged lepton.The cross-section is measured as a function of the transverse momentum and rapidity of both the hadronic and leptonic pseudo-top-quark as well as the transverse momentum, rapidity and invariant mass of the pseudo-top-quark pair system. The measurements are corrected for detector effects and are presented within a kinematic range that closely matches the detector acceptance. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.
Resumo:
The chapter presents a theoretical proposal of three analytical models of Adult Learning and Education (ALE) policies. Some analytical categories and the corresponding dimensions are organised according to the ALE rationale which is typical of each social policy model. Historical, cultural and educational features are mentioned in connexion with the different policy models and its interpretative capacity to making sense of policies and practices implemented in Germany, Portugal and Sweden. !e analysis includes the states of the art and the official representations of ALE produced by the respective national authorities through national reports which were presented to CONFINTEA VI (2009).
Resumo:
Students have different ways for learning and processing information. Some students prefer learning through seeing while others prefer learning through listening; some students prefer doing activities while other prefer reflecting.Some students reason logically, while others reason intuitively, etc. Identifying the learning style of each student, and providing learning content based on these styles represents a good method to enhance the learning quality. However, there are no efforts onhow to detect the students’ learning styles in mobile computer supported collaborative learning (MCSCL) environments. We present in this paper new ways for automatically detecting the learning styles of students in MCSCL environments based on the learning style model of Felder-Silverman. The identified learning styles of students could be then stored and used at anytime toassign each one of them to his/her appropriate learning group.
Resumo:
[Extrat] The answer to the social and economic challenges that it is assumed literacy (or its lack) puts to developed countries deeply concerns public policies of governments namely those of the OECD area. In the last decades, these concerns gave origin to several and diverse monitoring devices, initiatives and programmes for reading (mainly) development, putting a strong stress on education. UNESCO (2006, p. 6), for instance, assumes that the literacy challenge can only be met raising the quality of primary and secondary education and intensifying programmes explicitly oriented towards youth and adult literacy. (...)
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
Series: "Advances in intelligent systems and computing , ISSN 2194-5357, vol. 417"
Resumo:
The tt¯ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton--proton collisions at a centre-of-mass energy of 7 TeV in the single-lepton channel. The data were collected with the ATLAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb−1. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. The results are shown after background subtraction and corrections for all detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
In longitudinal studies of disease, patients may experience several events through a follow-up period. In these studies, the sequentially ordered events are often of interest and lead to problems that have received much attention recently. Issues of interest include the estimation of bivariate survival, marginal distributions and the conditional distribution of gap times. In this work we consider the estimation of the survival function conditional to a previous event. Different nonparametric approaches will be considered for estimating these quantities, all based on the Kaplan-Meier estimator of the survival function. We explore the finite sample behavior of the estimators through simulations. The different methods proposed in this article are applied to a data set from a German Breast Cancer Study. The methods are used to obtain predictors for the conditional survival probabilities as well as to study the influence of recurrence in overall survival.
Resumo:
Proceedings da AUTEX 2015, Bucareste, Roménia.
Resumo:
En el actual marco de creciente innovación pedagógica, debido entre otros factores, a la irrupción de nuevas herramientas informáticas, la enseñanza a distancia (e-learning y/o b-learning) va ocupando cada vez más espacio en la oferta educativa de diversas instituciones. En esta dirección, en la Universidade do Minho, y concretamente en el Área de Estudos Espanhóis e Hispano-Americanos,[1] hemos dedicado considerables esfuerzos a la ampliación de nuestra oferta desde 2010: primero en la elaboración e implementación del Curso de Formación Especializada en Español Lengua Extranjera, modalidad b-learning (3 ediciones; 2010-2013), y, actualmente, con el Máster Universitario en Español Lengua Segunda / Lengua Extranjera (vid. www.melsle.ilch.uminho.pt), también b-learning. En las siguientes páginas, nos proponemos compartir una serie de experiencias y reflexiones que han ido surgiendo durante estos años acerca de la formación universitária de profesores de Español Lengua Extranjera, en general, con recurso a la modalidade b-learning; para ello, nos centraremos en los siguientes aspectos: (i) caracterización general y problematización de la enseñanza a distancia en la Universidade do Minho; (ii) descripción del Máster Universitario en Español Lengua Segunda / Lengua Extranjera, acerca del cual detallaremos algunas prácticas adoptadas, relacionadas com la enseñanza e-learning como, por ejemplo, (iii) la coordinación pedagógica o (iv) los enfoques metodológicos adoptados a partir de la experiencia de una Unidad Curricular concreta.
Resumo:
The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.
Resumo:
Several suction–water-content (s-w) calibrations for the filter paper method (FPM) used for soil-suction measurement have been published. Most of the calibrations involve a bilinear function (i.e., two different equations) with an inflection point occurring at 60 kPafunction with a smooth transition between the high and low suctions based on a regression analysis of various previously published calibrations obtained for filter paper Whatman No. 42 (W42) is presented and discussed. The approach is applied herein to data obtained from three establish bilinear calibrations (six equations) for W42 filter paper to determine the two fitting parameters of the continuous function. An experimental evaluation of the new calibration show that the suctions estimated by the contact FPM test using the proposed function compare well with suctions measured by other laboratory
techniques for two different soils for the suction range of 50 kPa
Resumo:
The research aimed to establish tyre-road noise models by using a Data Mining approach that allowed to build a predictive model and assess the importance of the tested input variables. The data modelling took into account three learning algorithms and three metrics to define the best predictive model. The variables tested included basic properties of pavement surfaces, macrotexture, megatexture, and uneven- ness and, for the first time, damping. Also, the importance of those variables was measured by using a sensitivity analysis procedure. Two types of models were set: one with basic variables and another with complex variables, such as megatexture and damping, all as a function of vehicles speed. More detailed models were additionally set by the speed level. As a result, several models with very good tyre-road noise predictive capacity were achieved. The most relevant variables were Speed, Temperature, Aggregate size, Mean Profile Depth, and Damping, which had the highest importance, even though influenced by speed. Megatexture and IRI had the lowest importance. The applicability of the models developed in this work is relevant for trucks tyre-noise prediction, represented by the AVON V4 test tyre, at the early stage of road pavements use. Therefore, the obtained models are highly useful for the design of pavements and for noise prediction by road authorities and contractors.
Resumo:
Nutrient recycling in the forest is linked to the production and decomposition of litter, which are essential processes for forest maintenance, especially in regions of nutritionally poor soils. Human interventions in forest such as selecttive logging may have strong impacts on these processes. The objectives of this study were to estimate litterfall production and evaluate the influence of environmental factors (basal area of vegetation, plant density, canopy cover, and soil physicochemical properties) and anthropogenic factors (post-management age and exploited basal area) on this production, in areas of intact and exploited forest in southern Amazonia, located in the northern parts of Mato Grosso state. This study was conducted at five locations and the average annual production of litterfall was 10.6 Mg ha-1 year-1, higher than the values for the Amazon rainforest. There were differences in litterfall productions between study locations. Effects of historical logging intensity on litterfall production were not significant. Effects of basal area of vegetation and tree density on litterfall production were observed, highlighting the importance of local vegetation characteristics in litterfall production. This study demonstrated areas of transition between the Amazonia-Cerrado tend to have a higher litterfall production than Cerrado and Amazonia regions, and this information is important for a better understanding of the dynamics of nutrient and carbon cycling in these transition regions.