967 resultados para Field of the First and of the Second Kind
Resumo:
Purpose of the study: Basic life support (BLS) and automated externaldefibrillation (AED) represent important skills to be acquired duringpregraduate medical training. Since 3 years, our medical school hasintroduced a BLS-AED course (with certification) for all second yearmedical students. Few reports about quality and persistence over timeof BLS-AED learning are available to date in the medical literature.Comprehensive evaluation of students' acquired skills was performedat the end of the 2008 academic year, 6 month after certification.Materials and methods: The students (N = 142) were evaluated duringa 9 minutes «objective structured clinical examination» (OSCE) station.Out of a standardized scenario, they had to recognize a cardiac arrestsituation and start a resuscitation process. Their performance wererecorded on a PC using an Ambuman(TM) mannequin and the AmbuCPR software kit(TM) during a minimum of 8 cycles (30 compressions:2 ventilations each). BLS parameters were systematically checked. Nostudent-rater interactions were allowed during the whole evaluation.Results: Response of the victim was checked by 99% of the students(N = 140), 96% (N = 136) called for an ambulance and/or an AED. Openthe airway and check breathing were done by 96% (N = 137), 92% (N =132) gave 2 rescue breaths. Pulse was checked by 95% (N=135), 100%(N = 142) begun chest compression, 96% (N = 136) within 1 minute.Chest compression rate was 101 ± 18 per minute (mean ± SD), depthcompression 43 ± 8 mm, 97% (N = 138) respected a compressionventilationratio of 30:2.Conclusions: Quality of BLS skills acquisition is maintained during a6-month period after a BLS-AED certification. Main targets of 2005 AHAguidelines were well respected. This analysis represents one of thelargest evaluations of specific BLS teaching efficiency reported. Furtherfollow-up is needed to control the persistence of these skills during alonger time period and noteworthy at the end of the pregraduatemedical curriculum.
Resumo:
Report for Iowa Utilities Board
Resumo:
Panurginae have a pair of cuticular depressions in the second metasomal tergum, recognized as lateral foveae of the T2. These structures have been used as systematic and taxonomic characters, although their functions are yet unknown. We aimed a morphological analysis at lateral foveae of three species of Panurgillus Moure, 1998: P. vagabundus (Cockerell, 1918), P. reticulatus Schlindwein & Moure, 1998 e P. flavitarsis Schlindwein & Moure, 1998. The study of the external morphology showed that the lateral foveae of the T2 are evident among females, but in males they are undistinguishable or absent. The surface of the foveae is micropunctuated in all species. The histological analysis has shown that the region of the lateral foveae of the T2, of female and male of the three species, presented tegumentar specializations. The inner part showed an evident secretory epithelium recognized as Class I gland. The height of this secretory epithelium was not uniform, although the cellular features are similar independent of sex. We have not found any previous information regarding the presence of glands related to abdominal foveae in Panurginae species.
Resumo:
The approximants to regular continued fractions constitute `best approximations' to the numbers they converge to in two ways known as of the first and the second kind.This property of continued fractions provides a solution to Gosper's problem of the batting average: if the batting average of a baseball player is 0.334, what is the minimum number of times he has been at bat? In this paper, we tackle somehow the inverse question: given a rational number P/Q, what is the set of all numbers for which P/Q is a `best approximation' of one or the other kind? We prove that inboth cases these `Optimality Sets' are intervals and we give aprecise description of their endpoints.
Resumo:
Depression and suicidal ideation are tightly linked to the lack of hope in the future. Hopelessness begins with the occurrence of negative life events and develops through the perception that negative outcomes are stable and pervasive. Most of the research has investigated individual factors predicting hopelessness. However, other studies have shown that the social context may also play an important role: disadvantaged contexts exacerbate the feeling that future is unreachable and hopeless. In this study we investigate the role of shared emotions (emotional climates) on the sense of hopelessness during the second half of the life. Emotional climates have been defined as the emotional relationships constructed between members of a society and describe the quality of the environment within a particular community. We present results of multilevel analyses using data from the NCCR-LIVES769 project «Vulnerability and growth», the Swiss Household Panel and official statistics, that explore the relationship between characteristics of the Swiss cantons and hopelessness. Although hopelessness is mainly affected by individual factors as life events and personality, results show that canton socio-economic conditions and climates of optimism or pessimism have an effect on the individual perception of hopelessness. Individuals are more likely to feel hopeless after having experienced critical events (i.e., loss of the partner in the late life) in cantons with high rates of unemployment and with a high share of negative emotions. On the contrary, positive emotional climates play a protective role against hopelessness.
Resumo:
Parameters of intrarectal pressure (surface area under pressure curve and peak pressure) recorded with a microsystem device during the second phase of labor showed no significant correlations with baby's weight or mode of delivery. AIM OF THE STUDY: Was to assess the biomechanical pressures delivered against pelvic floor structures during the second phase of labor in nulliparae women, and to correlate them with obstetrics parameters, i.e. baby'sweight and mode of delivery. MATERIAL: Using a microsystem device placed into the rectum at the beginning of the second phase of labor, two parameters were assessed during the bearing efforts in 59 nulliparae women: the surface area under the pressure curve and the peak pressure. RESULTS: During 11.5±9 bearing efforts of 99.1±16s duration, the mean value of surface area under the pressure curve was 32677±26058cm/s and the mean value of the peak pressure was 60.7±24cmH(2)O, exceeding 100cmH(2)O in 10% of women. These two parameters were not correlated with baby's weight (R: 0.19, P: 0.15 and R: 0.05, P: 0.71). In the same way, these two parameters were not correlated with the mode of delivery (spontaneous or forceps/vacuum-assisted). Furthermore, the individual values of these two parameters showed great variation from one woman to another. CONCLUSION: This study has showed that parameters of biomechanical pressures recorded into the rectum during second phase of labor had no significant correlations with obstetricals parameters, explaining why these latter have poor predicitive value of further pelvic floor problems.
Resumo:
This document summarizes the available evidence and provides recommendations on the use of home blood pressure monitoring in clinical practice and in research. It updates the previous recommendations on the same topic issued in year 2000. The main topics addressed include the methodology of home blood pressure monitoring, its diagnostic and therapeutic thresholds, its clinical applications in hypertension, with specific reference to special populations, and its applications in research. The final section deals with the problems related to the implementation of these recommendations in clinical practice.
Resumo:
Purpose of the study: Basic life support (BLS) and automated externaldefibrillation (AED) represent important skills to be acquired duringpregraduate medical training. Since 3 years, our medical school hasintroduced a BLS-AED course (with certification) for all second yearmedical students. Few reports about quality and persistence over timeof BLS-AED learning are available to date in the medical literature.Comprehensive evaluation of students' acquired skills was performedat the end of the 2008 academic year, 6 month after certification.Materials and methods: The students (N = 142) were evaluated duringa 9 minutes «objective structured clinical examination» (OSCE) station.Out of a standardized scenario, they had to recognize a cardiac arrestsituation and start a resuscitation process. Their performance wererecorded on a PC using an Ambuman(TM) mannequin and the AmbuCPR software kit(TM) during a minimum of 8 cycles (30 compressions:2 ventilations each). BLS parameters were systematically checked. Nostudent-rater interactions were allowed during the whole evaluation.Results: Response of the victim was checked by 99% of the students(N = 140), 96% (N = 136) called for an ambulance and/or an AED. Openthe airway and check breathing were done by 96% (N = 137), 92% (N =132) gave 2 rescue breaths. Pulse was checked by 95% (N=135), 100%(N = 142) begun chest compression, 96% (N = 136) within 1 minute.Chest compression rate was 101 ± 18 per minute (mean ± SD), depthcompression 43 ± 8 mm, 97% (N = 138) respected a compressionventilationratio of 30:2.Conclusions: Quality of BLS skills acquisition is maintained during a6-month period after a BLS-AED certification. Main targets of 2005 AHAguidelines were well respected. This analysis represents one of thelargest evaluations of specific BLS teaching efficiency reported. Furtherfollow-up is needed to control the persistence of these skills during alonger time period and noteworthy at the end of the pregraduatemedical curriculum.
Resumo:
Blowing and drifting of snow is a major concern for transportation efficiency and road safety in regions where their development is common. One common way to mitigate snow drift on roadways is to install plastic snow fences. Correct design of snow fences is critical for road safety and maintaining the roads open during winter in the US Midwest and other states affected by large snow events during the winter season and to maintain costs related to accumulation of snow on the roads and repair of roads to minimum levels. Of critical importance for road safety is the protection against snow drifting in regions with narrow rights of way, where standard fences cannot be deployed at the recommended distance from the road. Designing snow fences requires sound engineering judgment and a thorough evaluation of the potential for snow blowing and drifting at the construction site. The evaluation includes site-specific design parameters typically obtained with semi-empirical relations characterizing the local transport conditions. Among the critical parameters involved in fence design and assessment of their post-construction efficiency is the quantification of the snow accumulation at fence sites. The present study proposes a joint experimental and numerical approach to monitor snow deposits around snow fences, quantitatively estimate snow deposits in the field, asses the efficiency and improve the design of snow fences. Snow deposit profiles were mapped using GPS based real-time kinematic surveys (RTK) conducted at the monitored field site during and after snow storms. The monitored site allowed testing different snow fence designs under close to identical conditions over four winter seasons. The study also discusses the detailed monitoring system and analysis of weather forecast and meteorological conditions at the monitored sites. A main goal of the present study was to assess the performance of lightweight plastic snow fences with a lower porosity than the typical 50% porosity used in standard designs of such fences. The field data collected during the first winter was used to identify the best design for snow fences with a porosity of 50%. Flow fields obtained from numerical simulations showed that the fence design that worked the best during the first winter induced the formation of an elongated area of small velocity magnitude close to the ground. This information was used to identify other candidates for optimum design of fences with a lower porosity. Two of the designs with a fence porosity of 30% that were found to perform well based on results of numerical simulations were tested in the field during the second winter along with the best performing design for fences with a porosity of 50%. Field data showed that the length of the snow deposit away from the fence was reduced by about 30% for the two proposed lower-porosity (30%) fence designs compared to the best design identified for fences with a porosity of 50%. Moreover, one of the lower-porosity designs tested in the field showed no significant snow deposition within the bottom gap region beneath the fence. Thus, a major outcome of this study is to recommend using plastic snow fences with a porosity of 30%. It is expected that this lower-porosity design will continue to work well for even more severe snow events or for successive snow events occurring during the same winter. The approach advocated in the present study allowed making general recommendations for optimizing the design of lower-porosity plastic snow fences. This approach can be extended to improve the design of other types of snow fences. Some preliminary work for living snow fences is also discussed. Another major contribution of this study is to propose, develop protocols and test a novel technique based on close range photogrammetry (CRP) to quantify the snow deposits trapped snow fences. As image data can be acquired continuously, the time evolution of the volume of snow retained by a snow fence during a storm or during a whole winter season can, in principle, be obtained. Moreover, CRP is a non-intrusive method that eliminates the need to perform man-made measurements during the storms, which are difficult and sometimes dangerous to perform. Presently, there is lots of empiricism in the design of snow fences due to lack of data on fence storage capacity on how snow deposits change with the fence design and snow storm characteristics and in the estimation of the main parameters used by the state DOTs to design snow fences at a given site. The availability of such information from CRP measurements should provide critical data for the evaluation of the performance of a certain snow fence design that is tested by the IDOT. As part of the present study, the novel CRP method is tested at several sites. The present study also discusses some attempts and preliminary work to determine the snow relocation coefficient which is one of the main variables that has to be estimated by IDOT engineers when using the standard snow fence design software (Snow Drift Profiler, Tabler, 2006). Our analysis showed that standard empirical formulas did not produce reasonable values when applied at the Iowa test sites monitored as part of the present study and that simple methods to estimate this variable are not reliable. The present study makes recommendations for the development of a new methodology based on Large Scale Particle Image Velocimetry that can directly measure the snow drift fluxes and the amount of snow relocated by the fence.
Resumo:
The objective was to evaluate the usefulness, accuracy, precision, and reproducibility of the second generation CMD for PC concrete under production conditions.
Resumo:
PURPOSE: At high magnetic field strengths (B0 ≥ 3 T), the shorter radiofrequency wavelength produces an inhomogeneous distribution of the transmit magnetic field. This can lead to variable contrast across the brain which is particularly pronounced in T2 -weighted imaging that requires multiple radiofrequency pulses. To obtain T2 -weighted images with uniform contrast throughout the whole brain at 7 T, short (2-3 ms) 3D tailored radiofrequency pulses (kT -points) were integrated into a 3D variable flip angle turbo spin echo sequence. METHODS: The excitation and refocusing "hard" pulses of a variable flip angle turbo spin echo sequence were replaced with kT -point pulses. Spatially resolved extended phase graph simulations and in vivo acquisitions at 7 T, utilizing both single channel and parallel-transmit systems, were used to test different kT -point configurations. RESULTS: Simulations indicated that an extended optimized k-space trajectory ensured a more homogeneous signal throughout images. In vivo experiments showed that high quality T2 -weighted brain images with uniform signal and contrast were obtained at 7 T by using the proposed methodology. CONCLUSION: This work demonstrates that T2 -weighted images devoid of artifacts resulting from B1 (+) inhomogeneity can be obtained at high field through the optimization of extended kT -point pulses. Magn Reson Med 71:1478-1488, 2014. © 2013 Wiley Periodicals, Inc.
Resumo:
The endodermis is the innermost cortical cell layer that surrounds the central vasculature and deposits an apoplastic diffusion barrier known as the Casparian strip. Although discovered 150 years ago, the underlying mechanisms responsible for formation of the Casparian strips have only recently been investigated. However, the fate of the endodermal cell goes further than formation of Casparian strips as they undergo a second level of differentiation, defined by deposition of suberin as a secondary cell wall. The presence and function of endodermal suberin in root barriers has remained enigmatic, as its role in barrier formation is not clear, especially in respect to the already existing Casparian strips. In this review, we present recent advances in the understanding of suberin synthesis, transport to the secondary cell wall, developmental features and functions. We focus on some of the major unknown questions revolving the function of endodermal suberin, which we now have the means to investigate. We further provide thoughts on how this knowledge might expand our current models on the developmental and physiological adaptation of root in response to the environment.