944 resultados para False spider mites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

T.Boongoen and Q. Shen. Semi-Supervised OWA Aggregation for Link-Based Similarity Evaluation and Alias Detection. Proceedings of the 18th International Conference on Fuzzy Systems (FUZZ-IEEE'09), pp. 288-293, 2009. Sponsorship: EPSRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scully, Roger, Becoming Europeans? Attitudes, Roles and Socialisation in the European Parliament (Oxford: Oxford University Press, 2005), pp.vii+168 RAE2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para a obtenção do grau de Mestre em Psicologia, ramo de Psicologia Clínica e da Saúde

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anomalies are unusual and significant changes in a network's traffic levels, which can often involve multiple links. Diagnosing anomalies is critical for both network operators and end users. It is a difficult problem because one must extract and interpret anomalous patterns from large amounts of high-dimensional, noisy data. In this paper we propose a general method to diagnose anomalies. This method is based on a separation of the high-dimensional space occupied by a set of network traffic measurements into disjoint subspaces corresponding to normal and anomalous network conditions. We show that this separation can be performed effectively using Principal Component Analysis. Using only simple traffic measurements from links, we study volume anomalies and show that the method can: (1) accurately detect when a volume anomaly is occurring; (2) correctly identify the underlying origin-destination (OD) flow which is the source of the anomaly; and (3) accurately estimate the amount of traffic involved in the anomalous OD flow. We evaluate the method's ability to diagnose (i.e., detect, identify, and quantify) both existing and synthetically injected volume anomalies in real traffic from two backbone networks. Our method consistently diagnoses the largest volume anomalies, and does so with a very low false alarm rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of TCP's critical tasks is to determine which packets are lost in the network, as a basis for control actions (flow control and packet retransmission). Modern TCP implementations use two mechanisms: timeout, and fast retransmit. Detection via timeout is necessarily a time-consuming operation; fast retransmit, while much quicker, is only effective for a small fraction of packet losses. In this paper we consider the problem of packet loss detection in TCP more generally. We concentrate on the fact that TCP's control actions are necessarily triggered by inference of packet loss, rather than conclusive knowledge. This suggests that one might analyze TCP's packet loss detection in a standard inferencing framework based on probability of detection and probability of false alarm. This paper makes two contributions to that end: First, we study an example of more general packet loss inference, namely optimal Bayesian packet loss detection based on round trip time. We show that for long-lived flows, it is frequently possible to achieve high detection probability and low false alarm probability based on measured round trip time. Second, we construct an analytic performance model that incorporates general packet loss inference into TCP. We show that for realistic detection and false alarm probabilities (as are achievable via our Bayesian detector) and for moderate packet loss rates, the use of more general packet loss inference in TCP can improve throughput by as much as 25%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object detection can be challenging when the object class exhibits large variations. One commonly-used strategy is to first partition the space of possible object variations and then train separate classifiers for each portion. However, with continuous spaces the partitions tend to be arbitrary since there are no natural boundaries (for example, consider the continuous range of human body poses). In this paper, a new formulation is proposed, where the detectors themselves are associated with continuous parameters, and reside in a parameterized function space. There are two advantages of this strategy. First, a-priori partitioning of the parameter space is not needed; the detectors themselves are in a parameterized space. Second, the underlying parameters for object variations can be learned from training data in an unsupervised manner. In profile face detection experiments, at a fixed false alarm number of 90, our method attains a detection rate of 75% vs. 70% for the method of Viola-Jones. In hand shape detection, at a false positive rate of 0.1%, our method achieves a detection rate of 99.5% vs. 98% for partition based methods. In pedestrian detection, our method reduces the miss detection rate by a factor of three at a false positive rate of 1%, compared with the method of Dalal-Triggs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of discovering frequent poly-regions (i.e. regions of high occurrence of a set of items or patterns of a given alphabet) in a sequence is studied, and three efficient approaches are proposed to solve it. The first one is entropy-based and applies a recursive segmentation technique that produces a set of candidate segments which may potentially lead to a poly-region. The key idea of the second approach is the use of a set of sliding windows over the sequence. Each sliding window covers a sequence segment and keeps a set of statistics that mainly include the number of occurrences of each item or pattern in that segment. Combining these statistics efficiently yields the complete set of poly-regions in the given sequence. The third approach applies a technique based on the majority vote, achieving linear running time with a minimal number of false negatives. After identifying the poly-regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a poly-region). An efficient algorithm for mining frequent arrangements of intervals is applied to the converted sequence to discover frequently occurring arrangements of poly-regions in different parts of DNA, including coding regions. The proposed algorithms are tested on various DNA sequences producing results of significant biological meaning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When we look at a scene, how do we consciously see surfaces infused with lightness and color at the correct depths? Random Dot Stereograms (RDS) probe how binocular disparity between the two eyes can generate such conscious surface percepts. Dense RDS do so despite the fact that they include multiple false binocular matches. Sparse stereograms do so even across large contrast-free regions with no binocular matches. Stereograms that define occluding and occluded surfaces lead to surface percepts wherein partially occluded textured surfaces are completed behind occluding textured surfaces at a spatial scale much larger than that of the texture elements themselves. Earlier models suggest how the brain detects binocular disparity, but not how RDS generate conscious percepts of 3D surfaces. A neural model predicts how the layered circuits of visual cortex generate these 3D surface percepts using interactions between visual boundary and surface representations that obey complementary computational rules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant galls constitute a branch of study and research which has been to me a subject of much interest for some time. At the start of this work, it was intended to include Plant galls in general, but after some months this was found to be too comprehensive a field and would in fact take a great many years to study fully. Even leaf galls alone, both of herbs and trees provide so large a field of investigation that ultimately I decided to confine my attention to those or our native trees and shrubs. Upon looking up the literature on this subject, it will be found that in nearly all cases, either the gall is described fully and mere mention made or the agent concerned in its production, or vice versa. This state of things is most unsatisfactory, as in studying galls, both the gall-maker and the gall formation must be examined in detail before it is safe to apply nomenclature. This work, therefore, sets out to give accurate and scientific descriptions of both galls and gall-makers. The difficulties encountered are manifold; firstly, our trees are all deciduous, hence, the collecting period is necessarily restricted to that time of the year between the appearance of the buds and the fall of the leaf. Secondly, the rearing of imagines is always difficult, especially in the case or the autumn gall; more will be said on this matter later. Lastly, due to war-time conditions much trouble was experienced in obtaining suitable literature and many invaluable books on this subject were unprocurable. The Plates at the back have all been copied from original material except in the case or the Phytoptid mites which have been sketched with the help of illustrations, the reason for this being the difficulty of making suitable mounts of these minute creatures, Where possible all stages or at least larva and imago have been sketched, together with the host plant and the type of gall-formation produced. Slides have also been made of most larvae and the imagines attached to cards and pinned on to pith or cork in the usual manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investment funds provide a low cost method of sharing in the rewards from capitalism. Recently “alternative investments” such as hedge funds have grown rapidly and the trading strategies open to hedge funds are now becoming available to mutual funds and even to ordinary retail investors. In this paper we analyze problems in assessing fund performance and the prospects for investment fund sectors. Choosing genuine outperformers among top funds requires a careful assessment of non-normality, order statistics and the possibility of false discoveries. The risk adjusted performance of the average hedge fund over the last 10-15 is actually not that impressive, although the “top” funds do appear to have statistically significant positive alphas.