995 resultados para FEEDING FREQUENCY
Resumo:
Background: The pathogenesis of diarrhea in patients receiving enteral feeding includes colonic water secretion, antibiotic prescription, and enteropathogenic colonization, each of which involves an interaction with the gastrointestinal microbiota. Objective: The objective was to investigate temporal changes in the concentrations of fecal microbiota and short-chain fatty acids (SCFAs) in patients starting 14-d of enteral feeding and to compare these changes between patients who do and do not develop diarrhea. Design: Twenty patients starting exclusive nasogastric enteral feeding were monitored for 14 d. Fecal samples were collected at the start, middle, and end of this period and were analyzed for major bacterial groups by using culture independent fluorescence in situ hybridization and for SCFAs by using gas-liquid chromatography. Results: Although no significant changes in fecal microbiota or SCFAs were observed during enteral feeding, stark alterations occurred within individual patients. Ten patients (50%) developed diarrhea, and these patients had significantly higher concentrations of clostridia (P = 0.026) and lower concentrations (P = 0.069) and proportions (P = 0.029) of bifidobacteria. Patients with and without diarrhea had differences in the proportion of bifidobacteria (median: 0.4% and 3.7%; interquartile range: 0.8 compared with 4.3; P = 0.035) and clostridia (median: 10.4% and 3.7%; interquartile range: 14.7 compared with 7.0; P = 0.063), respectively, even at the start of enteral feeding. Patients who developed diarrhea had higher concentrations of total fecal SCFAs (P = 0.044), acetate (P = 0.029), and butyrate (P = 0.055). Conclusion: Intestinal dysbiosis occurs in patients who develop diarrhea during enteral feeding and may be involved in its pathogenesis. Am J Clin Nutr 2009; 89: 240-7.
Resumo:
An evaluation of milk urea nitrogen (MUN) as a diagnostic of protein feeding in dairy cows was performed using mean treatment data (n = 306) from 50 production trials conducted in Finland (n = 48) and Sweden (n = 2). Data were used to assess the effects of diet composition and certain animal characteristics on MUN and to derive relationships between MUN and the efficiency of N utilization for milk production and urinary N excretion. Relationships were developed using regression analysis based on either models of fixed factors or using mixed models that account for between-experiment variations. Dietary crude protein (CP) content was the best single predictor of MUN and accounted for proportionately 0.778 of total variance [ MUN (mg/dL) = -14.2 + 0.17 x dietary CP content (g/kg dry matter)]. The proportion of variation explained by this relationship increased to 0.952 when a mixed model including the random effects of study was used, but both the intercept and slope remained unchanged. Use of rumen degradable CP concentration in excess of predicted requirements, or the ratio of dietary CP to metabolizable energy as single predictors, did not explain more of the variation in MUN (R-2 = 0.767 or 0.778, respectively) than dietary CP content. Inclusion of other dietary factors with dietary CP content in bivariate models resulted in only marginally better predictions of MUN (R-2 = 0.785 to 0.804). Closer relationships existed between MUN and dietary factors when nutrients (CP to metabolizable energy) were expressed as concentrations in the diet, rather than absolute intakes. Furthermore, both MUN and MUN secretion (g/d) provided more accurate predictions of urinary N excretion (R-2 = 0.787 and 0.835, respectively) than measurements of the efficiency of N utilization for milk production (R-2 = 0.769). It is concluded that dietary CP content is the most important nutritional factor influencing MUN, and that measurements of MUN can be utilized as a diagnostic of protein feeding in the dairy cow and used to predict urinary N excretion.
Resumo:
Diet therapy utilizing probiotics and prebiotics may help treat many common gastrointestinal complaints. From birth to about 2 years of age the human digestive tract changes from sterile to a complex ecosystem with at least 500 bacterial species, most of these are benign and even necessary, however, pathogenic species also colonize the digestive tract. The idea is that prebiotics and probiotics can be used to displace and neutralise these pathogens.
Resumo:
We report two studies of the distinct effects that a word's age of acquisition (AoA) and frequency have on the mental lexicon. In the first study, a purely statistical analysis, we show that AoA and frequency are related in different ways to the phonological form and imageability of different words. In the second study, three groups of participants (34 seven-year-olds, 30 ten-year-olds, and 17 adults) took part in an auditory lexical decision task, with stimuli varying in AoA, frequency, length, neighbourhood density, and imageability. The principal result is that the influence of these different variables changes as a function of AoA: Neighbourhood density effects are apparent for early and late AoA words, but not for intermediate AoA, whereas imageability effects are apparent for intermediate AoA words but not for early or late AoA. These results are discussed from the perspective that AoA affects a word's representation, but frequency affects processing biases.
Resumo:
Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).
Resumo:
As a vital factor affecting system cost and lifetime, energy consumption in wireless sensor networks (WSNs) has been paid much attention to. This article presents a new approach to making use of electromagnetic energy from useless radio frequency (RF) signals transmitted in WSNs, with a quantitative analysis showing its feasibility. A mechanism to harvest the energy either passively or actively is proposed.
A low clock frequency FFT core implementation for multiband full-rate ultra-wideband (UWB) receivers
Resumo:
This paper discusses the design, implementation and synthesis of an FFT module that has been specifically optimized for use in the OFDM based Multiband UWB system, although the work is generally applicable to many other OFDM based receiver systems. Previous work has detailed the requirements for the receiver FFT module within the Multiband UWB ODFM based system and this paper draws on those requirements coupled with modern digital architecture principles and low power design criteria to converge on our optimized solution particularly aimed at a low-clock rate implementation. The FFT design obtained in this paper is also applicable for implementation of the transmitter IFFT module therefore only needing one FFT module in the device for half-duplex operation. The results from this paper enable the baseband designers of the 200Mbit/sec variant of Multiband UWB systems (and indeed other OFDM based receivers) using System-on-Chip (SoC), FPGA and ASIC technology to create cost effective and low power consumer electronics product solutions biased toward the very competitive market.
Resumo:
Every winter, the high-latitude oceans are struck by severe storms that are considerably smaller than the weather-dominating synoptic depressions1. Accompanied by strong winds and heavy precipitation, these often explosively developing mesoscale cyclones—termed polar lows1—constitute a threat to offshore activities such as shipping or oil and gas exploitation. Yet owing to their small scale, polar lows are poorly represented in the observational and global reanalysis data2 often used for climatological investigations of atmospheric features and cannot be assessed in coarse-resolution global simulations of possible future climates. Here we show that in a future anthropogenically warmed climate, the frequency of polar lows is projected to decline. We used a series of regional climate model simulations to downscale a set of global climate change scenarios3 from the Intergovernmental Panel of Climate Change. In this process, we first simulated the formation of polar low systems in the North Atlantic and then counted the individual cases. A previous study4 using NCEP/NCAR re-analysis data5 revealed that polar low frequency from 1948 to 2005 did not systematically change. Now, in projections for the end of the twenty-first century, we found a significantly lower number of polar lows and a northward shift of their mean genesis region in response to elevated atmospheric greenhouse gas concentration. This change can be related to changes in the North Atlantic sea surface temperature and mid-troposphere temperature; the latter is found to rise faster than the former so that the resulting stability is increased, hindering the formation or intensification of polar lows. Our results provide a rare example of a climate change effect in which a type of extreme weather is likely to decrease, rather than increase.
Resumo:
In this paper we are mainly concerned with the development of efficient computer models capable of accurately predicting the propagation of low-to-middle frequency sound in the sea, in axially symmetric (2D) and in fully 3D environments. The major physical features of the problem, i.e. a variable bottom topography, elastic properties of the subbottom structure, volume attenuation and other range inhomogeneities are efficiently treated. The computer models presented are based on normal mode solutions of the Helmholtz equation on the one hand, and on various types of numerical schemes for parabolic approximations of the Helmholtz equation on the other. A new coupled mode code is introduced to model sound propagation in range-dependent ocean environments with variable bottom topography, where the effects of an elastic bottom, of volume attenuation, surface and bottom roughness are taken into account. New computer models based on finite difference and finite element techniques for the numerical solution of parabolic approximations are also presented. They include an efficient modeling of the bottom influence via impedance boundary conditions, they cover wide angle propagation, elastic bottom effects, variable bottom topography and reverberation effects. All the models are validated on several benchmark problems and versus experimental data. Results thus obtained were compared with analogous results from standard codes in the literature.
Resumo:
A cause and effect relationship between glucagon-like peptide 1 (7, 36) amide (GLP-1) and cholecystokinin (CCK) and DMI regulation has not been established in ruminants. Three randomized complete block experiments were conducted to determine the effect of feeding fat or infusing GLP-1 or CCK intravenously on DMI, nutrient digestibility, and Cr rate of passage (using Cr(2)O(3) as a marker) in wethers. A total of 18 Targhee × Hampshire wethers (36.5 ± 2.5 kg of BW) were used, and each experiment consisted of four 21-d periods (14 d for adaptation and 7 d for infusion and sampling). Wethers allotted to the control treatments served as the controls for all 3 experiments; experiments were performed simultaneously. The basal diet was 60% concentrate and 40% forage. In Exp. 1, treatments were the control (0% added fat) and addition of 4 or 6% Ca salts of palm oil fatty acids (DM basis). Treatments in Exp. 2 and 3 were the control and 3 jugular vein infusion dosages of GLP-1 (0.052, 0.103, or 0.155 µg•kg of BW(-1)•d(-1)) or CCK (0.069, 0.138, or 0.207 µg•kg of BW(-1)•d(-1)), respectively. Increases in plasma GLP-1 and CCK concentrations during hormone infusions were comparable with increases observed when increasing amounts of fat were fed. Feeding fat and infusion of GLP-1 tended (linear, P = 0.12; quadratic, P = 0.13) to decrease DMI. Infusion of CCK did not affect (P > 0.21) DMI. Retention time of Cr in the total gastrointestinal tract decreased (linear, P < 0.01) when fat was fed, but was not affected by GLP-1 or CCK infusion. In conclusion, jugular vein infusion produced similar plasma CCK and GLP-1 concentrations as observed when fat was fed. The effects of feeding fat on DMI may be partially regulated by plasma concentration of GLP-1, but are not likely due solely to changes in a single hormone concentration.
Resumo:
We compare the variability of the Atlantic meridional overturning circulation (AMOC) as simulated by the coupled climate models of the RAPID project, which cover a wide range of resolution and complexity, and observed by the RAPID/MOCHA array at about 26N. We analyse variability on a range of timescales. In models of all resolutions there is substantial variability on timescales of a few days; in most AOGCMs the amplitude of the variability is of somewhat larger magnitude than that observed by the RAPID array, while the amplitude of the simulated annual cycle is similar to observations. A dynamical decomposition shows that in the models, as in observations, the AMOC is predominantly geostrophic (driven by pressure and sea-level gradients), with both geostrophic and Ekman contributions to variability, the latter being exaggerated and the former underrepresented in models. Other ageostrophic terms, neglected in the observational estimate, are small but not negligible. In many RAPID models and in models of the Coupled Model Intercomparison Project Phase 3 (CMIP3), interannual variability of the maximum of the AMOC wherever it lies, which is a commonly used model index, is similar to interannual variability in the AMOC at 26N. Annual volume and heat transport timeseries at the same latitude are well-correlated within 15-45N, indicating the climatic importance of the AMOC. In the RAPID and CMIP3 models, we show that the AMOC is correlated over considerable distances in latitude, but not the whole extent of the north Atlantic; consequently interannual variability of the AMOC at 50N is not well-correlated with the AMOC at 26N.