953 resultados para Extrathoracic Airway


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergic asthma is characterized by airflow obstruction, airway hyperresponsiveness (AHR) and chronic airway inflammation. We and others have reported that complement component C3 and the anaphylatoxin C3a receptor promote while C5 protects against the development of the biological and physiological hallmarks of allergic lung disease in mice. In this study, we assessed if the protective responses could be mediated by C5a, an activation-induced C5 cleavage product. Mice with ablation of the C5a receptor (C5aR) either by genetic deletion or by pharmacological blockade exhibited significantly exacerbated AHR compared to allergen-challenged wild-type (WT) mice. However, there were no significant differences in many of the other hallmarks of asthma such as airway infiltration by eosinophils or lymphocytes, pulmonary IL-4-producing cell numbers, goblet cell metaplasia, mucus secretion or total serum IgE levels. In contrast to elevated AHR, numbers of IL-5 and IL-13 producing pulmonary cells, and IL-5 and IL-13 protein levels, were significantly reduced in allergen-challenged C5aR-/- mice compared to allergen-challenged WT mice. Administration of a specific cysteinyl leukotriene receptor 1 (cysLT1R) antagonist before each allergen-challenge abolished AHR in C5aR-/- as well as in WT mice. Pretreatment with a C3aR antagonist dose-dependently reduced AHR in allergen-challenged WT and C5aR-/- mice. Additionally, allergen-induced upregulation of pulmonary C3aR expression was exaggerated in C5aR-/- mice compared to WT mice. In summary, deficiency or antagonism of C5aR in a mouse model of pulmonary allergy increased AHR, which was reversed or reduced by blockade of the cysLT1R and C3aR, respectively. In conclusion, this study suggests that C5a and C5aR mediate protection against AHR by suppressing cysLT and C3aR signaling pathways, which are known to promote AHR. This also supports important and opposing roles of complement components C3a/C3aR and C5a/C5aR in AHR. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic exposure of the airways to cigarette smoke induces inflammatory response and genomic instability that play important roles in lung cancer development. Nuclear factor kappa B (NF-κB), the major intracellular mediator of inflammatory signals, is frequently activated in preneoplastic and malignant lung lesions. ^ Previously, we had shown that a lung tumor suppressor GPRC5A is frequently repressed in human non-small cell lung cancers (NSCLC) cells and lung tumor specimens. Recently, other groups have shown that human GPRC5A transcript levels are higher in bronchial samples of former than of current smokers. These results suggested that smoking represses GPRC5A expression and thus promotes the occurrence of lung cancer. We hypothesized that cigarette smoking or associated inflammatory response repressed GPRC5A expression through NF-κB signaling. ^ To determine the effect of inflammation, we examined GPRC5A protein expression in several lung cell lines following by TNF-α treatment. TNF-α significantly suppressed GPRC5A expression in normal small airway epithelial cells (SAEC) as well as in Calu-1 cells. Real-time PCR analysis indicated that TNF-α inhibits GPRC5A expression at the transcriptional level. NF-κB, the major downstream effectors of TNF-α signaling, mediates TNF-α-induced repression of GPRC5A because over-expression of NF-κB suppressed GPRC5A. To determine the region in the GPRC5A promoter through which NF-κB acts, we examined the ability of TNF-α to inhibit a series of reporter constructs with different deletions of GPRC5A promoter. The luciferase assay showed that the potential NF-κB binding sites containing region are irresponsible for TNF-α-induced suppression. Further analysis using constructs with different deletions in p65 revealed that NF-κB-mediated repression of GPRC5A is transcription-independent. Co-immunoprecipitation assays revealed that NF-κB could form a complex with RAR/RXR heterodimer. Moreover, the inhibitory effect of NF-κB has been found to be proportional to NF-κB/RAR ratio in luciferase assay. Finally, Chromatin IP demonstrated that NF-κB/p65 bound to GPRC5A promoter as well as RAR/RXR and suppressed transcription. Taken together, we propose that inflammation-induced NF-κB activation disrupts the RA signaling and suppresses GPRC5A expression and thus contributes to the oncogenesis of lung cancer. Our studies shed new light on the pathogenesis of lung cancer and potentially provide novel interventions for preventing and treating this disease. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergen-induced asthma is the leading form of asthma and a chronic condition worldwide. Common allergens are known to contribute to the pathogenesis of this disease. Murine models of allergic asthma have mostly used an intraperitoneal route of sensitization (not airway) to study this disease. Allergic asthma pathophysiology involves the activation of TH2-specific cells, which triggers production of IgE antibodies, the up-regulation of TH2-specific cytokines (i.e. IL-4, IL-5, IL-9 and IL-13), increased airway eosinophilia, and mucin hypersecretion. Although there are several therapeutics currently treating asthmatic patients, some of these treatments can result in drug tolerance and may be linked to increased mortality. CpG oligodeoxynucleotides (ODNs) is a synthetic ligand that targets Toll-like Receptor (TLR) 9. It has been evaluated as a therapeutic agent for the treatment of cancer, infectious diseases, and for treating allergy and asthma. PUL-042 is also a synthetic TLR ligand and is composed of two agonists against TLR2/6 heterodimer and TLR9. Previous studies have evaluated PUL-042 for its ability to confer resistance against bacterial and viral lung infection. These findings, combined with studies performed using CpG ODNs, led to speculation that PUL-042 dampens the immune response in allergen-induced asthma. My thesis research investigated airway route sensitization and airway delivery of PUL-042 to evaluate its effects in reducing an allergen-induced asthma phenotype in a murine model. The results of this study contribute to the foundation for future investigations to evaluate the efficacy of PUL-042 as a novel therapy in allergic-asthma disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente Tesis analiza las posibilidades que ofrecen en la actualidad las tecnologías del habla para la detección de patologías clínicas asociadas a la vía aérea superior. El estudio del habla que tradicionalmente cubre tanto la producción como el proceso de transformación del mensaje y las señales involucradas, desde el emisor hasta alcanzar al receptor, ofrece una vía de estudio alternativa para estas patologías. El hecho de que la señal emitida no solo contiene este mensaje, sino también información acerca del locutor, ha motivado el desarrollo de sistemas orientados a la identificación y verificación de la identidad de los locutores. Estos trabajos han recibido recientemente un nuevo impulso, orientándose tanto hacia la caracterización de rasgos que son comunes a varios locutores, como a las diferencias existentes entre grabaciones de un mismo locutor. Los primeros resultan especialmente relevantes para esta Tesis dado que estos rasgos podrían evidenciar la presencia de características relacionadas con una cierta condición común a varios locutores, independiente de su identidad. Tal es el caso que se enfrenta en esta Tesis, donde los rasgos identificados se relacionarían con una de la patología particular y directamente vinculada con el sistema de físico de conformación del habla. El caso del Síndrome de Apneas Hipopneas durante el Sueno (SAHS) resulta paradigmático. Se trata de una patología con una elevada prevalencia mundo, que aumenta con la edad. Los pacientes de esta patología experimentan episodios de cese involuntario de la respiración durante el sueño, que se prolongan durante varios segundos y que se reproducen a lo largo de la noche impidiendo el correcto descanso. En el caso de la apnea obstructiva, estos episodios se deben a la imposibilidad de mantener un camino abierto a través de la vía aérea, de forma que el flujo de aire se ve interrumpido. En la actualidad, el diagnostico de estos pacientes se realiza a través de un estudio polisomnográfico, que se centra en el análisis de los episodios de apnea durante el sueño, requiriendo que el paciente permanezca en el hospital durante una noche. La complejidad y el elevado coste de estos procedimientos, unidos a las crecientes listas de espera, han evidenciado la necesidad de contar con técnicas rápidas de detección, que si bien podrían no obtener tasas tan elevadas, permitirían reorganizar las listas de espera en función del grado de severidad de la patología en cada paciente. Entre otros, los sistemas de diagnostico por imagen, así como la caracterización antropométrica de los pacientes, han evidenciado la existencia de patrones anatómicos que tendrían influencia directa sobre el habla. Los trabajos dedicados al estudio del SAHS en lo relativo a como esta afecta al habla han sido escasos y algunos de ellos incluso contradictorios. Sin embargo, desde finales de la década de 1980 se conoce la existencia de patrones específicos relativos a la articulación, la fonación y la resonancia. Sin embargo, su descripción resultaba difícilmente aprovechable a través de un sistema de reconocimiento automático, pero apuntaba la existencia de un nexo entre voz y SAHS. En los últimos anos las técnicas de procesado automático han permitido el desarrollo de sistemas automáticos que ya son capaces de identificar diferencias significativas en el habla de los pacientes del SAHS, y que los distinguen de los locutores sanos. Por contra, poco se conoce acerca de la conexión entre estos nuevos resultados, los sé que habían obtenido en el pasado y la patogénesis del SAHS. Esta Tesis continua la labor desarrollada en este ámbito considerando específicamente: el estudio de la forma en que el SAHS afecta el habla de los pacientes, la mejora en las tasas de clasificación automática y la combinación de la información obtenida con los predictores utilizados por los especialistas clínicos en sus evaluaciones preliminares. Las dos primeras tareas plantean problemas simbióticos, pero diferentes. Mientras el estudio de la conexión entre el SAHS y el habla requiere de modelos acotados que puedan ser interpretados con facilidad, los sistemas de reconocimiento se sirven de un elevado número de dimensiones para la caracterización y posterior identificación de patrones. Así, la primera tarea debe permitirnos avanzar en la segunda, al igual que la incorporación de los predictores utilizados por los especialistas clínicos. La Tesis aborda el estudio tanto del habla continua como del habla sostenida, con el fin de aprovechar las sinergias y diferencias existentes entre ambas. En el análisis del habla continua se tomo como punto de partida un esquema que ya fue evaluado con anterioridad, y sobre el cual se ha tratado la evaluación y optimización de la representación del habla, así como la caracterización de los patrones específicos asociados al SAHS. Ello ha evidenciado la conexión entre el SAHS y los elementos fundamentales de la señal de voz: los formantes. Los resultados obtenidos demuestran que el éxito de estos sistemas se debe, fundamentalmente, a la capacidad de estas representaciones para describir dichas componentes, obviando las dimensiones ruidosas o con poca capacidad discriminativa. El esquema resultante ofrece una tasa de error por debajo del 18%, sirviéndose de clasificadores notablemente menos complejos que los descritos en el estado del arte y de una única grabación de voz de corta duración. En relación a la conexión entre el SAHS y los patrones observados, fue necesario considerar las diferencias inter- e intra-grupo, centrándonos en la articulación característica del locutor, sustituyendo los complejos modelos de clasificación por el estudio de los promedios espectrales. El resultado apunta con claridad hacia ciertas regiones del eje de frecuencias, sugiriendo la existencia de un estrechamiento sistemático en la sección del tracto en la región de la orofaringe, ya prevista en la patogénesis de este síndrome. En cuanto al habla sostenida, se han reproducido los estudios realizados sobre el habla continua en grabaciones de la vocal /a/ sostenida. Los resultados son cualitativamente análogos a los anteriores, si bien en este caso las tasas de clasificación resultan ser más bajas. Con el objetivo de identificar el sentido de este resultado se reprodujo el estudio de los promedios espectrales y de la variabilidad inter e intra-grupo. Ambos estudios mostraron importantes diferencias con los anteriores que podrían explicar estos resultados. Sin embargo, el habla sostenida ofrece otras oportunidades al establecer un entorno controlado para el estudio de la fonación, que también había sido identificada como una fuente de información para la detección del SAHS. De su estudio se pudo observar que, en el conjunto de datos disponibles, no existen variaciones que pudieran asociarse fácilmente con la fonación. Únicamente aquellas dimensiones que describen la distribución de energía a lo largo del eje de frecuencia evidenciaron diferencias significativas, apuntando, una vez más, en la dirección de las resonancias espectrales. Analizados los resultados anteriores, la Tesis afronta la fusión de ambas fuentes de información en un único sistema de clasificación. Con ello es posible mejorar las tasas de clasificación, bajo la hipótesis de que la información presente en el habla continua y el habla sostenida es fundamentalmente distinta. Esta tarea se realizo a través de un sencillo esquema de fusión que obtuvo un 88.6% de aciertos en clasificación (tasa de error del 11.4%), lo que representa una mejora significativa respecto al estado del arte. Finalmente, la combinación de este clasificador con los predictores utilizados por los especialistas clínicos ofreció una tasa del 91.3% (tasa de error de 8.7%), que se encuentra dentro del margen ofrecido por esquemas más costosos e intrusivos, y que a diferencia del propuesto, no pueden ser utilizados en la evaluación previa de los pacientes. Con todo, la Tesis ofrece una visión clara sobre la relación entre el SAHS y el habla, evidenciando el grado de madurez alcanzado por la tecnología del habla en la caracterización y detección del SAHS, poniendo de manifiesto que su uso para la evaluación de los pacientes ya sería posible, y dejando la puerta abierta a futuras investigaciones que continúen el trabajo aquí iniciado. ABSTRACT This Thesis explores the potential of speech technologies for the detection of clinical disorders connected to the upper airway. The study of speech traditionally covers both the production process and post processing of the signals involved, from the speaker up to the listener, offering an alternative path to study these pathologies. The fact that utterances embed not just the encoded message but also information about the speaker, has motivated the development of automatic systems oriented to the identification and verificaton the speaker’s identity. These have recently been boosted and reoriented either towards the characterization of traits that are common to several speakers, or to the differences between records of the same speaker collected under different conditions. The first are particularly relevant to this Thesis as these patterns could reveal the presence of features that are related to a common condition shared among different speakers, regardless of their identity. Such is the case faced in this Thesis, where the traits identified would relate to a particular pathology, directly connected to the speech production system. The Obstructive Sleep Apnea syndrome (OSA) is a paradigmatic case for analysis. It is a disorder with high prevalence among adults and affecting a larger number of them as they grow older. Patients suffering from this disorder experience episodes of involuntary cessation of breath during sleep that may last a few seconds and reproduce throughout the night, preventing proper rest. In the case of obstructive apnea, these episodes are related to the collapse of the pharynx, which interrupts the air flow. Currently, OSA diagnosis is done through a polysomnographic study, which focuses on the analysis of apnea episodes during sleep, requiring the patient to stay at the hospital for the whole night. The complexity and high cost of the procedures involved, combined with the waiting lists, have evidenced the need for screening techniques, which perhaps would not achieve outstanding performance rates but would allow clinicians to reorganize these lists ranking patients according to the severity of their condition. Among others, imaging diagnosis and anthropometric characterization of patients have evidenced the existence of anatomical patterns related to OSA that have direct influence on speech. Contributions devoted to the study of how this disorder affects scpeech are scarce and somehow contradictory. However, since the late 1980s the existence of specific patterns related to articulation, phonation and resonance is known. By that time these descriptions were virtually useless when coming to the development of an automatic system, but pointed out the existence of a link between speech and OSA. In recent years automatic processing techniques have evolved and are now able to identify significant differences in the speech of OSAS patients when compared to records from healthy subjects. Nevertheless, little is known about the connection between these new results with those published in the past and the pathogenesis of the OSA syndrome. This Thesis is aimed to progress beyond the previous research done in this area by addressing: the study of how OSA affects patients’ speech, the enhancement of automatic OSA classification based on speech analysis, and its integration with the information embedded in the predictors generally used by clinicians in preliminary patients’ examination. The first two tasks, though may appear symbiotic at first, are quite different. While studying the connection between speech and OSA requires simple narrow models that can be easily interpreted, classification requires larger models including a large number dimensions for the characterization and posterior identification of the observed patterns. Anyhow, it is clear that any progress made in the first task should allow us to improve our performance on the second one, and that the incorporation of the predictors used by clinicians shall contribute in this same direction. The Thesis considers both continuous and sustained speech analysis, to exploit the synergies and differences between them. On continuous speech analysis, a conventional speech processing scheme, designed and evaluated before this Thesis, was taken as a baseline. Over this initial system several alternative representations of the speech information were proposed, optimized and tested to select those more suitable for the characterization of OSA-specific patterns. Evidences were found on the existence of a connection between OSA and the fundamental constituents of the speech: the formants. Experimental results proved that the success of the proposed solution is well explained by the ability of speech representations to describe these specific OSA-related components, ignoring the noisy ones as well those presenting low discrimination capabilities. The resulting scheme obtained a 18% error rate, on a classification scheme significantly less complex than those described in the literature and operating on a single speech record. Regarding the connection between OSA and the observed patterns, it was necessary to consider inter-and intra-group differences for this analysis, and to focus on the articulation, replacing the complex classification models by the long-term average spectra. Results clearly point to certain regions on the frequency axis, suggesting the existence of a systematic narrowing in the vocal tract section at the oropharynx. This was already described in the pathogenesis of this syndrome. Regarding sustained speech, similar experiments as those conducted on continuous speech were reproduced on sustained phonations of vowel / a /. Results were qualitatively similar to the previous ones, though in this case perfomance rates were found to be noticeably lower. Trying to derive further knowledge from this result, experiments on the long-term average spectra and intraand inter-group variability ratios were also reproduced on sustained speech records. Results on both experiments showed significant differences from the previous ones obtained from continuous speech which could explain the differences observed on peformance. However, sustained speech also provided the opportunity to study phonation within the controlled framework it provides. This was also identified in the literature as a source of information for the detection of OSA. In this study it was found that, for the available dataset, no sistematic differences related to phonation could be found between the two groups of speakers. Only those dimensions which relate energy distribution along the frequency axis provided significant differences, pointing once again towards the direction of resonant components. Once classification schemes on both continuous and sustained speech were developed, the Thesis addressed their combination into a single classification system. Under the assumption that the information in continuous and sustained speech is fundamentally different, it should be possible to successfully merge the two of them. This was tested through a simple fusion scheme which obtained a 88.6% correct classification (11.4% error rate), which represents a significant improvement over the state of the art. Finally, the combination of this classifier with the variables used by clinicians obtained a 91.3% accuracy (8.7% error rate). This is within the range of alternative, but costly and intrusive schemes, which unlike the one proposed can not be used in the preliminary assessment of patients’ condition. In the end, this Thesis has shed new light on the underlying connection between OSA and speech, and evidenced the degree of maturity reached by speech technology on OSA characterization and detection, leaving the door open for future research which shall continue in the multiple directions that have been pointed out and left as future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a fully automatic simultaneous lung vessel and airway enhancement filter. The approach consists of a Frangi-based multiscale vessel enhancement filtering specifically designed for lung vessel and airway detection, where arteries and veins have high contrast with respect to the lung parenchyma, and airway walls are hollow tubular structures with a non negative response using the classical Frangi's filter. The features extracted from the Hessian matrix are used to detect centerlines and approximate walls of airways, decreasing the filter response in those areas by applying a penalty function to the vesselness measure. We validate the segmentation method in 20 CT scans with different pathological states within the VESSEL12 challenge framework. Results indicate that our approach obtains good results, decreasing the number of false positives in airway walls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

cAMP-dependent phosphorylation activates the cystic fibrosis transmembrane conductance regulator (CFTR) in epithelia. However, the protein phosphatase (PP) that dephosphorylates and inactivates CFTR in airway and intestinal epithelia, two major sites of disease, is not certain. We found that in airway and colonic epithelia, neither okadaic acid nor FK506 prevented inactivation of CFTR when cAMP was removed. These results suggested that a phosphatase distinct from PP1, PP2A, and PP2B was responsible. Because PP2C is insensitive to these inhibitors, we tested the hypothesis that it regulates CFTR. We found that PP2Cα is expressed in airway and T84 intestinal epithelia. To test its activity on CFTR, we generated recombinant human PP2Cα and found that it dephosphorylated CFTR and an R domain peptide in vitro. Moreover, in cell-free patches of membrane, addition of PP2Cα inactivated CFTR Cl− channels; reactivation required readdition of kinase. Finally, coexpression of PP2Cα with CFTR in epithelia reduced the Cl− current and increased the rate of channel inactivation. These results suggest that PP2C may be the okadaic acid-insensitive phosphatase that regulates CFTR in human airway and T84 colonic epithelia. It has been suggested that phosphatase inhibitors could be of therapeutic value in cystic fibrosis; our data suggest that PP2C may be an important phosphatase to target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30–100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant ΔF508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficient expression of therapeutic genes in target cells or tissues is an important component of efficient and safe gene therapy. Utilizing regulatory elements from the human cytokeratin 18 (K18) gene, including 5′ genomic sequences and one of its introns, we have developed a novel expression cassette that can efficiently express reporter genes, as well as the human cystic fibrosis transmembrane conductance regulator (CFTR) gene, in cultured lung epithelial cells. CFTR transcripts expressed from the native K18 enhancer/promoter include two alternative splicing products, due to the activation of two cryptic splice sites in the CFTR coding region. Modification of the K18 intron and CFTR cDNA sequences eliminated the cryptic splice sites without changing the CFTR amino acid sequence, and led to enhanced CFTR mRNA and protein expression as well as biological function. Transgenic expression analysis in mice showed that the modified expression cassette can direct efficient and epithelium-specific expression of the Escherichia coli LacZ gene in the airways of fetal lungs, with no detectable expression in lung fibroblasts or endothelial cells. This is the first expression cassette which selectively directs lung transgene expression for CFTR gene therapy to airway epithelia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To assess the response of healthy infants to airway hypoxia (15% oxygen in nitrogen).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NO synthases are widely distributed in the lung and are extensively involved in the control of airway and vascular homeostasis. It is recognized, however, that the O2-rich environment of the lung may predispose NO toward toxicity. These Janus faces of NO are manifest in recent clinical trials with inhaled NO gas, which has shown therapeutic benefit in some patient populations but increased morbidity in others. In the airways and circulation of humans, most NO bioactivity is packaged in the form of S-nitrosothiols (SNOs), which are relatively resistant to toxic reactions with O2/O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}. This finding has led to the proposition that channeling of NO into SNOs may provide a natural defense against lung toxicity. The means to selectively manipulate the SNO pool, however, has not been previously possible. Here we report on a gas, O-nitrosoethanol (ENO), which does not react with O2 or release NO and which markedly increases the concentration of indigenous species of SNO within airway lining fluid. Inhalation of ENO provided immediate relief from hypoxic pulmonary vasoconstriction without affecting systemic hemodynamics. Further, in a porcine model of lung injury, there was no rebound in cardiopulmonary hemodynamics or fall in oxygenation on stopping the drug (as seen with NO gas), and additionally ENO protected against a decline in cardiac output. Our data suggest that SNOs within the lung serve in matching ventilation to perfusion, and can be manipulated for therapeutic gain. Thus, ENO may be of particular benefit to patients with pulmonary hypertension, hypoxemia, and/or right heart failure, and may offer a new therapeutic approach in disorders such as asthma and cystic fibrosis, where the airways may be depleted of SNOs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue remodeling often reflects alterations in local mechanical conditions and manifests as an integrated response among the different cell types that share, and thus cooperatively manage, an extracellular matrix. Here we examine how two different cell types, one that undergoes the stress and the other that primarily remodels the matrix, might communicate a mechanical stress by using airway cells as a representative in vitro system. Normal stress is imposed on bronchial epithelial cells in the presence of unstimulated lung fibroblasts. We show that (i) mechanical stress can be communicated from stressed to unstressed cells to elicit a remodeling response, and (ii) the integrated response of two cell types to mechanical stress mimics key features of airway remodeling seen in asthma: namely, an increase in production of fibronectin, collagen types III and V, and matrix metalloproteinase type 9 (MMP-9) (relative to tissue inhibitor of metalloproteinase-1, TIMP-1). These observations provide a paradigm to use in understanding the management of mechanical forces on the tissue level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic Pseudomonas aeruginosa infection occurs in 75–90% of patients with cystic fibrosis (CF). It is the foremost factor in pulmonary function decline and early mortality. A connection has been made between mutant or missing CF transmembrane conductance regulator (CFTR) in lung epithelial cell membranes and a failure in innate immunity leading to initiation of P. aeruginosa infection. Epithelial cells use CFTR as a receptor for internalization of P. aeruginosa via endocytosis and subsequent removal of bacteria from the airway. In the absence of functional CFTR, this interaction does not occur, allowing for increased bacterial loads in the lungs. Binding occurs between the outer core of the bacterial lipopolysaccharide and amino acids 108–117 in the first predicted extracellular domain of CFTR. In experimentally infected mice, inhibiting CFTR-mediated endocytosis of P. aeruginosa by inclusion in the bacterial inoculum of either free bacterial lipopolysaccharide or CFTR peptide 108–117 resulted in increased bacterial counts in the lungs. CFTR is also a receptor on gastrointestinal epithelial cells for Salmonella enterica serovar Typhi, the etiologic agent of typhoid fever. There was a significant decrease in translocation of this organism to the gastrointestinal submucosa in transgenic mice that are heterozygous carriers of a mutant ΔF508 CFTR allele, suggesting heterozygous CFTR carriers may have increased resistance to typhoid fever. The identification of CFTR as a receptor for bacterial pathogens could underlie the biology of CF lung disease and be the basis for the heterozygote advantage for carriers of mutant alleles of CFTR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid and macromolecule secretion by submucosal glands in mammalian airways is believed to be important in normal airway physiology and in the pathophysiology of cystic fibrosis (CF). An in situ fluorescence method was applied to measure the ionic composition and viscosity of freshly secreted fluid from airway glands. Fragments of human large airways obtained at the time of lung transplantation were mounted in a humidified perfusion chamber and the mucosal surface was covered by a thin layer of oil. Individual droplets of secreted fluid were microinjected with fluorescent indicators for measurement of [Na+], [Cl−], and pH by ratio imaging fluorescence microscopy and viscosity by fluorescence recovery after photobleaching. After carbachol stimulation, 0.1–0.5 μl of fluid accumulated in spherical droplets at gland orifices in ≈3–5 min. In gland fluid from normal human airways, [Na+] was 94 ± 8 mM, [Cl−] was 92 ± 12 mM, and pH was 6.97 ± 0.06 (SE, n = 7 humans, more than five glands studied per sample). Apparent fluid viscosity was 2.7 ± 0.3-fold greater than that of saline. Neither [Na+] nor pH differed in gland fluid from CF airways, but viscosity was significantly elevated by ≈2-fold compared to normal airways. These results represent the first direct measurements of ionic composition and viscosity in uncontaminated human gland secretions and indicate similar [Na+], [Cl−], and pH to that in the airway surface liquid. The elevated gland fluid viscosity in CF may be an important factor promoting bacterial colonization and airway disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Few promoters are active at high levels in all cells. Of these, the majority encode structural RNAs transcribed by RNA polymerases I or III and are not accessible for the expression of proteins. An exception are the small nuclear RNAs (snRNAs) transcribed by RNA polymerase II. Although snRNA biosynthesis is unique and thought not to be compatible with synthesis of functional mRNA, we have tested these promoters for their ability to express functional mRNAs. We have used the murine U1a and U1b snRNA gene promoters to express the Escherichia coli lacZ gene and the human alpha-globin gene from either episomal or integrated templates by transfection, or infection into a variety of mammalian cell types. Equivalent expression of beta-galactosidase was obtained from < 250 nucleotides of 5'-flanking sequence containing the complete promoter of either U1 snRNA gene or from the 750-nt cytomegalovirus promoter and enhancer regions. The mRNA was accurately initiated at the U1 start site, efficiently spliced and polyadenylylated, and localized to polyribosomes. Recombinant adenovirus containing the U1b-lacZ chimeric gene transduced and expressed beta-galactosidase efficiently in human 293 cells and airway epithelial cells in culture. Viral vectors containing U1 snRNA promoters may be an attractive alternative to vectors containing viral promoters for persistent high-level expression of therapeutic genes or proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate here that coexpression of ROMK2, an inwardly rectifying ATP-sensitive renal K+ channel (IKATP) with cystic fibrosis transmembrane regulator (CFTR) significantly enhances the sensitivity of ROMK2 to the sulfonylurea compound glibenclamide. When expressed alone, ROMK2 is relatively insensitive to glibenclamide. The interaction between ROMK2, CFTR, and glibenclamide is modulated by altering the phosphorylation state of either ROMK2, CFTR, or an associated protein, as exogenous MgATP and the catalytic subunit of protein kinase A significantly attenuate the inhibitory effect of glibenclamide on ROMK2. Thus CFTR, which has been demonstrated to interact with both Na+ and Cl- channels in airway epithelium, modulates the function of renal ROMK2 K+ channels.