971 resultados para Expansion palatine rapide assistée chirurgicalement (EPRAC)
Resumo:
Mode of access: Internet.
Resumo:
"Ouvrage ayant obtenu le prix du roi."
Resumo:
Includes bibliographical references.
Resumo:
"Substantially a reprint of the second edition of 1824."
Resumo:
"December, 1996."
Resumo:
"October 2001."
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Multipole expansion of an incident radiation field-that is, representation of the fields as sums of vector spherical wavefunctions-is essential for theoretical light scattering methods such as the T-matrix method and generalised Lorenz-Mie theory (GLMT). In general, it is theoretically straightforward to find a vector spherical wavefunction representation of an arbitrary radiation field. For example, a simple formula results in the useful case of an incident plane wave. Laser beams present some difficulties. These problems are not a result of any deficiency in the basic process of spherical wavefunction expansion, but are due to the fact that laser beams, in their standard representations, are not radiation fields, but only approximations of radiation fields. This results from the standard laser beam representations being solutions to the paraxial scalar wave equation. We present an efficient method for determining the multipole representation of an arbitrary focussed beam. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The rms2 and rms4 pea ( Pisum sativum L.) branching mutants have higher and lower xylem-cytokinin concentration, respectively, relative to wild type (WT) plants. These genotypes were grown at two levels of nitrogen (N) supply for 18 - 20 d to determine whether or not xylem-cytokinin concentration (X-CK) or delivery altered the transpiration and leaf growth responses to N deprivation. Xylem sap was collected by pressurising de-topped root systems. As sap-flow rate increased, X-CK declined in WT and rms2, but did not change in rms4. When grown at 5.0 mM N, X-CKs of rms2 and rms4 were 36% higher and 6-fold lower, respectively, than WT at sap-flow rates equivalent to whole-plant transpiration. Photoperiod cytokinin (CK) delivery rates ( the product of transpiration and X-CK) decreased more than 6-fold in rms4. Growth of plants at 0.5 mM N had negligible (< 10%) effects on transpiration rates expressed on a leaf area basis in WT and rms4, but decreased transpiration rates of rms2. The low-N treatment decreased leaf expansion by 20 - 25% and expanding leaflet N concentration by 15%. These changes were similar in all genotypes. At sap-flow rates equivalent to whole-plant transpiration, the low N treatment decreased X-CK in rms2 but had no discernible effect in WT and rms4. Since the low N treatment decreased transpiration of all genotypes, photoperiod CK delivery rates also decreased in all genotypes. The similar leaf growth response of all genotypes to N deprivation despite differences in both absolute and relative X-CKs and deliveries suggests that shoot N status is more important in regulating leaf expansion than xylem-supplied cytokinins. The decreased X-CK and transpiration rate of rms2 following N deprivation suggests that changes in xylem-supplied CKs may modify water use.
Resumo:
The efficient in vitro expansion of antigen-specific CD8(+) cytotoxic T lymphocytes (CTL) for use in adoptive immunotherapy represents an important clinical goal. Furthermore, the avidity of expanded CTL populations often correlates closely with clinical outcome. In our study, high-avidity CTL lines could be expanded ex vivo from an antigen-primed animal using low peptide concentration, and intermediate peptide concentrations favored the generation of lower avidity CTL. Further increases in peptide concentration during culture inhibited the expansion of all peptide-specific CD8(+) cells. In contrast, a single amino acid variant peptide efficiently generated functional CTL populations at high or low peptide concentration, which responded to wild-type epitope with the lowest average avidity seen in this study. We propose that for some peptides, the efficient generation of low-avidity CTL responses will be favored by stimulation with altered peptide rather than high concentrations of wild-type epitope. In addition, some variant peptides designed to have improved binding to major histocompatibility complex class I may reduce rather than enhance the functional avidity for the wild-type peptide of ex vivo-expanded CTL. These observations are relevant to in vitro expansion of CTL for immunotherapy and strategies to elicit regulatory or therapeutic immunity to neo-self-antigen when central tolerance has eliminated high-avidity, cognate T cells.
Resumo:
An experimental investigation of high-enthalpy flow over a toroidal ballute (balloon/parachute) was conducted in an expansion tube facility. The ballute, proposed for use in a number of future aerocapture missions, involves the deployment of a large toroidal-shaped inflatable parachute behind a space vehicle to generate drag on passing through a planetary atmosphere, thus, placing the spacecraft in orbit. A configuration consisting of a spherical spacecraft, followed by a toroid, was tested in a superorbital facility. Measurements at moderate-enthalpy conditions (15-20 MJ/kg) in nitrogen and carbon dioxide showed peak heat transfer rates of around 20 MW/m(2) on the toroid. At higher enthalpies (>50 MJ/kg) in nitrogen, carbon dioxide, and a hydrogen-neon mixture, heat transfer rates above 100 MW/m(2) were observed. Imaging using near-resonant holographic interferometry showed that the flows were steady except when the opening of the toroid was blocked.
Resumo:
Free surface flow of groundwater in aquifers has been studied since the early 1960s. Previous investigations have been based on the Boussinesq equation, derived from the non-linear kinematic boundary condition. In fact, the Boussinesq equation is the zeroth-order equation in the shallow-water expansion. A key assumption in this expansion is that the mean thickness of the aquifer is small compared with a reference length, normally taken to be the linear decay length. In this study, we re-examine the expansion scheme for free surface groundwater flows, and propose a new expansion wherein the shallow-water assumption is replaced by a steepness assumption. A comparison with experimental data shows that the new model provides a better prediction of water table levels than the conventional shallow-water expansion. The applicable ranges of the two expansions are exhibited. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present a new method of modeling imaging of laser beams in the presence of diffraction. Our method is based on the concept of first orthogonally expanding the resultant diffraction field (that would have otherwise been obtained by the laborious application of the Huygens diffraction principle) and then representing it by an effective multimodal laser beam with different beam parameters. We show not only that the process of obtaining the new beam parameters is straightforward but also that it permits a different interpretation of the diffraction-caused focal shift in laser beams. All of the criteria that we have used to determine the minimum number of higher-order modes needed to accurately represent the diffraction field show that the mode-expansion method is numerically efficient. Finally, the characteristics of the mode-expansion method are such that it allows modeling of a vast array of diffraction problems, regardless of the characteristics of the incident laser beam, the diffracting element, or the observation plane. (C) 2005 Optical Society of America.