985 resultados para Evolution equations
Resumo:
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.
Resumo:
Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.
Resumo:
Fatigue testing was performed using a kind of triangular shaped specimen to obtain the characteristics of numerical density evolution for short cracks at the primary stage of fatigue damage. The material concerned is a structural alloy steel. The experimental results show that the numerical density of short cracks reaches the maximum value when crack length is slightly less than the average grain diameter, indicating grain boundary is the main barrier for short crack extension. Based on the experimental observations and related theory, the expressions for growth velocity and nucleation rate of short cracks have been proposed. With the solution to phase space conservation equation, the theoretical results of numerical density evolution for short cracks were obtained, which were in agreement with our experimental measurements.
Resumo:
A numerical simulation of damage evolution in a two-dimensional system of micocracks is presented. It reveals that the failure is induced by a cascade of coalescences of microcracks, and the fracture surface appears fractal. A model of evolution-induced catastrophe is introduced. The fractal dimension is found to be a function of evolution rule only. This result could qualitatively explain the correlation of fractal dimension and fracture toughness discovered in experiments.
Resumo:
A new interrupting method was proposed and the split Hopkinson torsional bar (SHTB) was modified in order to eliminate the effect of loading reverberation on post-mortem observations. This makes the comparative study of macro- and microscopic observations on tested materials and relevant transient measurement of tau - gamma curve possible. The experimental results of the evolution of shear localization in in Ti-6Al-4V alloy studied with the modified SHTB are reported in the paper. The collapse of shear stress seems to be closely related to the appearance of a certain critical coalescence of microcracks. The voids may form within the localized shear zone at a quite early stage. Finally, void coalescence results in elongated cavities and their extension leads to fracture along the shear band.
Resumo:
A model of dynamical process and stochastic jump has been put forward to study the pattern evolution in damage-fracture. According to the final states of evolution processes, the evolution modes can be classified as globally stable modes (GS modes) and evolution induced catastrophic modes (ElC modes); the latter are responsible for fracture. A statistical description is introduced to clarify the pattern evolution in this paper. It is indicated that the appearance of fracture in disordered materials should be depicted by probability distribution function.
Resumo:
Fracture due to coalescence of microcracks seems to be catalogued in a new model of evolution induced catastrophe (EIC). The key underlying mechanism of the EIC is its automatically enlarging interaction of microcracks. This leads to an explosively evolving catastrophe. Most importantly, the EIC presents a fractal dimension spectrum which appears to be dependent on the interaction.
Resumo:
A compact upwind scheme with dispersion control is developed using a dissipation analogy of the dispersion term. The term is important in reducing the unphysical fluctuations in numerical solutions. The scheme depends on three free parameters that may be used to regulate the size of dissipation as well as the size and direction of dispersion. A coefficient to coordinate the dispersion is given. The scheme has high accuracy, the method is simple, and the amount of computation is small. It also has a good capability of capturing shock waves. Numerical experiments are carried out with two-dimensional shock wave reflections and the results are very satisfactory.
Resumo:
Perturbations are applied to the convective coefficients and source term of a convection-diffusion equation so that second-order corrections may be applied to a second-order exponential scheme. The basic Structure of the equations in the resulting fourth-order scheme is identical to that for the second order. Furthermore, the calculations are quite simple as the second-order corrections may be obtained in a single pass using a second-order scheme. For one to three dimensions, the fourth-order exponential scheme is unconditionally stable. As examples, the method is applied to Burgers' and other fluid mechanics problems. Compared with schemes normally used, the accuracies are found to be good and the method is applicable to regions with large gradients.
Resumo:
It is proved that the simplified Navier-Stokes (SNS) equations presented by Gao Zhi[1], Davis and Golowachof-Kuzbmin-Popof (GKP)[3] are respectively regular and singular near a separation point for a two-dimensional laminar flow over a flat plate. The order of the algebraic singularity of Davis and GKP equation[2,3] near the separation point is indicated. A comparison among the classical boundary layer (CBL) equations, Davis and GKP equations, Gao Zhi equations and the complete Navier-Stokes (NS) equations near the separation point is given.
Resumo:
Improving the resolution of the shock is one of the most important subjects in computational aerodynamics. In this paper the behaviour of the solutions near the shock is discussed and the reason of the oscillation production is investigated heuristically. According to the differential approximation of the difference scheme the so-called diffusion analogy equation and the diffusion analogy coefficient are defined. Four methods for improving the resolution of the shock are presented using the concept of diffusion analogy.
Resumo:
This study deals with the formulation, mathematical property and physical meaning of the simplified Navier-Stokes (SNS) equations. The tensorial SNS equations proposed is the simplest in form and is applicable to flow fields with arbitrary body boundaries. The zones of influence and dependence of the SNS equations, which are of primary importance to numerical solutions, are expounded for the first time from the viewpoint of subcharacteristics. Besides, a detailed analysis of the diffusion process in flow fields shows that the diffusion effect has an influence zone globally windward and an upwind propagation greatly depressed by convection. The maximum upwind influential distance of the viscous effect and the relative importance of the viscous effect in the flow direction to that in the direction normal to the flow are represented by the Reynolds number, which illustrates the conversion of the complete Navier-Stokes (NS) equations to the SNS equations for flows with large Reynolds number.
Resumo:
In the case of suspension flows, the rate of interphase momentum transfer M(k) and that of interphase energy transfer E(k), which were expressed as a sum of infinite discontinuities by Ishii, have been reduced to the sum of several terms which have concise physical significance. M(k) is composed of the following terms: (i) the momentum carried by the interphase mass transfer; (ii) the interphase drag force due to the relative motion between phases; (iii) the interphase force produced by the concentration gradient of the dispersed phase in a pressure field. And E(k) is composed of the following four terms, that is, the energy carried by the interphase mass transfer, the work produced by the interphase forces of the second and third parts above, and the heat transfer between phases. It is concluded from the results that (i) the term, (-alpha-k-nabla-p), which is related to the pressure gradient in the momentum equation, can be derived from the basic conservation laws without introducing the "shared-pressure presumption"; (ii) the mean velocity of the action point of the interphase drag is the mean velocity of the interface displacement, upsilonBAR-i. It is approximately equal to the mean velocity of the dispersed phase, upsilonBAR-d. Hence the work terms produced by the drag forces are f(dc) . upsilonBAR-d, and f(cd) . upsilonBAR-d, respectively, with upsilonBAR-i not being replaced by the mean velocity of the continuous phase, upsilonBAR-c; (iii) by analogy, the terms of the momentum transfer due to phase change are upsilonBAR-d-GAMMA-c, and upsilonBAR-d-GAMMA-d, respectively; (iv) since the transformation between explicit heat and latent heat occurs in the process of phase change, the algebraic sum of the heat transfer between phases is not equal to zero. Q(ic) and Q(id) are composed of the explicit heat and latent heat, so that the sum Q(ic) + Q(id)) is equal to zero.