940 resultados para Ethylene oxides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic iron oxide nanoparticles have found application as contrast agents for magnetic resonance imaging (MRI) and as switchable drug delivery vehicles. Their stabilization as colloidal carriers remains a challenge. The potential of poly(ethylene imine)-g-poly(ethylene glycol) (PEGPEI) as stabilizer for iron oxide (γ-Fe₂O₃) nanoparticles was studied in comparison to branched poly(ethylene imine) (PEI). Carrier systems consisting of γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were prepared and characterized regarding their physicochemical properties including magnetic resonance relaxometry. Colloidal stability of the formulations was tested in several media and cytotoxic effects in adenocarcinomic epithelial cells were investigated. Synthesized γ-Fe₂O₃ cores showed superparamagnetism and high degree of crystallinity. Diameters of polymer-coated nanoparticles γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were found to be 38.7 ± 1.0 nm and 40.4 ± 1.6 nm, respectively. No aggregation tendency was observable for γ-Fe₂O₃-PEGPEI over 12 h even in high ionic strength media. Furthermore, IC₅₀ values were significantly increased by more than 10-fold when compared to γ-Fe₂O₃-PEI. Formulations exhibited r₂ relaxivities of high numerical value, namely around 160 mM⁻¹ s⁻¹. In summary, novel carrier systems composed of γ-Fe₂O₃-PEGPEI meet key quality requirements rendering them promising for biomedical applications, e.g. as MRI contrast agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermo-responsive materials have been of interest for many years, and have been studied mostly as thermally stimulated drug delivery vehicles. Recently acrylate and methacrylates with pendant ethylene glycol methyl ethers been studied as thermo responsive materials. This work explores thermo response properties of hybrid nanoparticles of one of these methacrylates (DEGMA) and a block copolymer with one of the acrylates (OEGA), with gold nanoparticle cores of different sizes. We were interested in the effects of gold core size, number and type of end groups that anchored the chains to the gold cores, and location of bonding sites on the thermo-response of the polymer. To control the number and location of anchoring groups we using a type of controlled radical polymerization called Reversible Addition Fragmentation Transfer (RAFT) Polymerization. Smaller gold cores did not show the thermo responsive behavior of the polymer but the gold cores did seem to self-assemble. Polymer anchored to larger gold cores did show thermo responsivity. The anchoring end group did not alter the thermoresponsivity but thiol-modified polymers stabilized gold cores less well than chains anchored by dithioester groups, allowing gold cores to grow larger. Use of multiple bonding groups stabilized the gold core. Using block copolymers we tested the effects of number of thiol groups and the distance between them. We observed that the use of multiple anchoring groups on the block copolymer with a sufficiently large gold core did not prevent thermo responsive behavior of the polymer to be detected which allows a new type of thermo-responsive hybrid nanoparticle to be used and studied for new applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of NOx within the snowpack at Summit, Greenland were carried out from June 2008 to July 2010, using a novel system to sample firn air with minimal disruption of the snowpack. These long-term measurements were motivated by the need of improving the representation of air-snow interactions in global models. Results indicated that the NOx budget within the snowpack was on the order of 550 pptv as maximum, and was constituted primarily for NO2. NOx production was observed within the first 50 cm of the snowpack during the sunlight season between February and August. Presence of NOx at larger depths was attributed to high speed wind and vertical transport processes. Production of NO correlated with the seasonal incoming radiation profile, while NO2 maximum was observed in April. These measurements constitute the larger data set of NOx within the firn and will improve the representation of processes driving snow photochemistry at Summit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ab-initio Hartree Fock (HF), density functional theory (DFT) and hybrid potentials were employed to compute the optimized lattice parameters and elastic properties of perovskite 3-d transition metal oxides. The optimized lattice parameters and elastic properties are interdependent in these materials. An interaction is observed between the electronic charge, spin and lattice degrees of freedom in 3-d transition metal oxides. The coupling between the electronic charge, spin and lattice structures originates due to localization of d-atomic orbitals. The coupling between the electronic charge, spin and crystalline lattice also contributes in the ferroelectric and ferromagnetic properties in perovskites. The cubic and tetragonal crystalline structures of perovskite transition metal oxides of ABO3 are studied. The electronic structure and the physics of 3-d perovskite materials is complex and less well considered. Moreover, the novelty of the electronic structure and properties of these perovskites transition metal oxides exceeds the challenge offered by their complex crystalline structures. To achieve the objective of understanding the structure and property relationship of these materials the first-principle computational method is employed. CRYSTAL09 code is employed for computing crystalline structure, elastic, ferromagnetic and other electronic properties. Second-order elastic constants (SOEC) and bulk moduli (B) are computed in an automated process by employing ELASTCON (elastic constants) and EOS (equation of state) programs in CRYSTAL09 code. ELASTCON, EOS and other computational algorithms are utilized to determine the elastic properties of tetragonal BaTiO3, rutile TiO2, cubic and tetragonal BaFeO3 and the ferromagentic properties of 3-d transition metal oxides. Multiple methods are employed to crosscheck the consistency of our computational results. Computational results have motivated us to explore the ferromagnetic properties of 3-d transition metal oxides. Billyscript and CRYSTAL09 code are employed to compute the optimized geometry of the cubic and tetragonal crystalline structure of transition metal oxides of Sc to Cu. Cubic crystalline structure is initially chosen to determine the effect of lattice strains on ferromagnetism due to the spin angular momentum of an electron. The 3-d transition metals and their oxides are challenging as the basis functions and potentials are not fully developed to address the complex physics of the transition metals. Moreover, perovskite crystalline structures are extremely challenging with respect to the quality of computations as the latter requires the well established methods. Ferroelectric and ferromagnetic properties of bulk, surfaces and interfaces are explored by employing CRYSTAL09 code. In our computations done on cubic TMOs of Sc-Fe it is observed that there is a coupling between the crystalline structure and FM/AFM spin polarization. Strained crystalline structures of 3-d transition metal oxides are subjected to changes in the electromagnetic and electronic properties. The electronic structure and properties of bulk, composites, surfaces of 3-d transition metal oxides are computed successfully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postmortem minimal invasive angiography has already been implemented to support virtual autopsy examinations. An experimental approach in a porcine model to overcome an initially described artificial tissue edema artifact by using a poly ethylene glycol (PEG) containing contrast agent solution showed promising results. The present publication describes the first application of PEG in a whole corpse angiographic CT examination. A minimal invasive postmortem CT angiography was performed in a human corpse utilizing the high viscosity contrast agent solution containing 65% of PEG. Injection was carried out via the femoral artery into the aortic root in simulated cardiac output conditions. Subsequent CT scanning delivered the 3D volume data of the whole corpse. Visualization of the human arterial anatomy was excellent and the contrast agent distribution was generally limited to the arterial system as intended. As exceptions an enhancement of the brain, the left ventricular myocardium and the renal cortex became obvious. This most likely represented the stage of centralization of the blood circulation at the time of death with dilatation of the precapillary arterioles within these tissues. Especially for the brain this resulted in a distinctively improved visualization of the intracerebral structures by CT. However, the general tissue edema artifact of postmortem minimal invasive angiography examinations could be distinctively reduced.