935 resultados para Ethylene oxide.
Resumo:
Ytterbium-sensitized erbium-doped oxide-halide tellurite and germanate-niobic-lead glasses have been synthesized by conventional melting method. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature in these glasses. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. Tellurite glass showed a weaker up-conversion emission than germanate-niobic-lead glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate-mobic-lead glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Compared with phonon side-band spectroscopy, Raman spectroscopy extracts more information including both phonon energy and phonon density. Our results reveal that the phonon density and the maximum phonon energy of host glasses are both important factors in determining the up-conversion efficiency. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The absorption spectra, emission spectra and infrared spectra of Er3+/Yb3+ co-doped xBi(2)O(3)-(65 - x)P2O5-4Yb(2)O(3)-11Al(2)O(3)-5BaO-15Na(2)O were measured and investigated. Spontaneous emission probability, radiative lifetime and branching ratios of Er3+ were calculated according to the Judd-Ofelt theory. The role of substitution of Bi2O3 for P2O5 on luminescence of Er3+/Yb3+ co-doped aluminophosphate glasses has been investigated. The calculated radiative lifetimes (tau(rad)) for I-4(13/2) and I-4(11/2) were decreasing with Bi2O3 content increases, whereas the measured total lifetime (tau(meas)) for I-4(13/2) showed linearly increasing trends. The effect of Bi2O3 introduction on OH- groups was also discussed according to the IR transmittance spectra of glasses. It was found that FWHM of glasses were not affected with the substitution of Bi2O3 for P2O5. The emission spectra intensity increased with Bi2O3 content due to the decreases of phonon energy and OH- content in glasses. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The broadband luminescence covering 1.2-1.6 mu m was observed from bismuth and aluminum co-doped germanium oxide glasses pumped by 808 nm laser at room temperature. The spectroscopic properties of GeO2:Bi,Al glasses strongly depend on the glass compositions and the pumping sources. To a certain extent, the Al3+ ions play as dispersing reagent for the infrared-emission centers in the GeO2:Bi,Al glasses. The broad infrared luminescence with a full width at half maximum larger than 200 nm and a lifetime longer than 200 mu s possesses these glasses with the potential applications in broadly tunable laser sources and ultra-broadband fiber amplifiers in optical communication field. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Near-infrared broadband emission from bismuth-tantalum-codoped germanium oxide glasses was observed at room temperature when the glasses were pumped by an 808 nm laser diode. The emission band covered the 0, E, S, C, and L bands (1260-1625 nm), with a maximum peak at similar to 1310 nm, a FWHM broader than 400 nm, and a lifetime longer than 200 lis. The observed broadband luminescence was attributed to bismuth clusters in the glasses. Bismuth-tantalum-codoped germanium oxide glass might be promising as amplification media for broadly tunable lasers and wideband amplifiers in optical communications. (c) 2005 Optical Society of America.
Resumo:
Polycrystalline Zn1-xNixO diluted magnetic semiconductors have been successfully synthesized by an auto-combustion method. X-ray diffraction measurements indicated that the 5 at% Ni-cloped ZnO had the pure wurtzite structure. Refinements of cell parameters from powder diffraction data revealed that the cell parameters of Zn0.95Ni0.05O were a little bit larger than ZnO. Transmission electron microscopy observation showed that the as-synthesized powders were of the size similar to 60 nm. Magnetic investigations showed that the nanocystalline Zn0.95Ni0.05O possessed room temperature ferromagnetisin with the saturation magnetic moment of 0.1 emu/g (0.29 mu(B)/Ni2+). (c) 2005 Elsevier B.V. All rights reserved.