973 resultados para Enzymatic esterification
Resumo:
The data presented describe the development of an enzymatic process in vegetable oils. Six bacterial lipases were tested for their ability to hydrolyze. For each lipase assay, the p-NPP method was applied to obtain maximum enzymatic activities. The lipase from Burkholderia cepacia (lipase B-10) was the most effective in buriti oil, releasing 4840 µmol p-NP mL-1. The lipase from Klebsiella variicola (lipase B-22) was superior in passion fruit oil, releasing 4140 µmol p-NP mL-1 and also in babassu palm oil, releasing 2934 µmol p-NP mL-1. Research into the bioprocessing of oils aims to provide added value for this regional raw material.
Resumo:
The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose) and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.
Resumo:
Metals such as copper and zinc are essential for the development and maintenance of numerous enzymatic activities, mitochondrial functions, neurotransmission, and also for memorization and learning. However, disruption in their homeostasis can cause neurodegenerative disorders such as the Alzheimer and Parkinson diseases. In this work, the speciation of copper and zinc in urine samples was carried out. To this end, free and total metal concentrations were determined by square wave anodic stripping voltammetry using a glassy carbon electrode coated with bismuth film. The digestion of the samples was performed in a microwave with the addition of oxidant reagents.
Resumo:
This work presents biochemical characterization of a lipase from a new strain of Bacillus sp. ITP-001, immobilized using a sol gel process (IB). The results from the biochemical characterization of IB showed increased activity for hydrolysis, with 526.63 U g-1 at pH 5.0 and 80 ºC, and thermal stability at 37 ºC. Enzymatic activity was stimulated by ions such as EDTA, Fe+3, Mn+2, Zn+2, and Ca+2, and in various organic solvents. Kinetic parameters obtained for the IB were Km = 14.62 mM, and Vmax = 0.102 mM min-1 g-1. The results of biochemical characterization revealed the improved catalytic properties of IB.
Resumo:
The application of Lipozyme (Termomyces lanuginosus) immobilized in gelatin gel in aliphatic ester synthesis was investigated taking the esterification of hexanoic acid with n-butanol as a model reaction. Conditions were optimized by factorial design and the highest conversion was obtained under the following conditions: molar ratio alcohol: acid of 2:1, reaction time of 48 h and biocatalyst weight of 7.0 g. Under these conditions the esterification yield was around 98 %. The operational stability of the immobilized lipase was assessed and results showed that after 12 batch runs, the enzyme showed no significant loss of activity.
Resumo:
Arrabidaea chica (H&B) Verlot is a plant popularly known as Pariri and this species is a known source of anthocyanins, flavonoids and tannins. This report describes an approach involving enzymatic treatment prior to extraction procedures to enhance A chica crude extract anticancer activity. Anticancer activity in human cancer cell lines in vitro using a 48 h SRB cell viability assay was performed to determine growth inhibition and cytotoxic properties. The final extraction yield without enzyme treatment was higher (24.28%) compared to the enzyme-treated material (19.03%), with an enhanced aglycones anthocyanin ratio as determined by HPLC- DAD and LC-MS with direct infusion.
Resumo:
The aim of this work was to study monoalkyl ester synthesis catalyzed by immobilized lipase Lipozyme RM IM via the esterification reaction. Yields of over 90% were obtained with butanol in esterification reactions with oleic acid. In the reactions with deodorizer distillates of vegetable oils and butanol, the conversion obtained was greater than 80% after 2.5 h. For the esterification reaction of palm fatty acid deodorizer distillate (PFAD) and butanol, seven reuse cycles of Lipozyme RM IM were carried out and the final conversion was 42% lower than the initial conversion.
Produção de concentrados de ácidos graxos por hidrólise de óleos vegetais mediada por lipase vegetal
Resumo:
The aim of this work was to verify the ability of enzymatic crude extract from dormant castor bean seeds to yield concentrated fatty acids by hydrolysis of polyunsaturated vegetable oils such as corn and sunflower. The enzymatic extract exhibited higher activity towards corn oil, which was selected for further studies to determine optimum hydrolysis conditions by factorial design. Maximum hydrolysis percentage (≈84%) was reached at 60% wt. oil:buffer acetate 100 mM pH 4.5, 33 ºC and 5.0% wt. of crude extract after 70 min of reaction. These results suggest that the use of low-cost lipase from castor bean seeds has potential for oil hydrolysis.
Resumo:
Kirjallisuusarvostelu
Resumo:
Brazil is renowned for its biodiversity; however, its economy is based on exotic plants, extraction and unsustainable use of natural resources. This issue was addressed in a recent QN review entitled "Chemistry without Borders." In order to explore the potential of Brazilian biodiversity fully, sustainable development is required in key technological areas, such as biotechnology. This research field is consistent with the green chemistry and white technology principles. Therefore, biotechnology is a sustainable alternative to conventional technologies and is expected to account for 20% of global chemicals by 2020. Brazil is the second largest grower of biotech crops and biodiesel, but its main activities rely on the fermentative process. In order to stimulate the national biotechnology development, the Brazilian Federal Government launched a national policy for biotechnology in 2007 and the National Committee of Biotechnology was created. Among the outstanding biotechnological processes, biocatalysis is one of the most important alternatives to conventional processing, and this field has changed dramatically with the advent of recombinant DNA technology in the 1970s, when large quantities of enzymes were accessible. The direct evolution methodology in the 1990s was a breakthrough and allowed tailoring of enzymes possessing high stability and stereoselectivity. However, about 60 years after the first industrial enzymatic biotransformation of steroids, the full potential of biocatalysis is far from being achieved. Future challenges in this field concern the multienzyme cascade reactions associated with optimized chemoenzymatic processes, and some recent industrial application of biocatalysts are also highlighted in this perspective.
Resumo:
Piperine is the major alkaloid of Piper nigrum Linn., used as a spice and in folk medicine. We present a molecular docking study supporting experimental data on the enhancement in bioavailability of propranolol, theophylline, phenytoin, nevirapine, nimesulide, pyrazinamide, carbamazepine, and spartein in the presence of piperine. The complex formed with piperine and CYP3A4 was shown to be the most stable of all, with a binding energy of -8.60 kcal/mol. This explains the related mechanism of drug-herb interaction, since the better anchoring of piperine in the active site of CYP3A4 can hinder the drug-enzyme interaction, thereby increasing the bioavailability of the drugs studied.
Resumo:
Materials obtained by the immobilization of 12-tungstophosphoric acid (PTA) on silica using the method of impregnation with excess solution in distinct solvents (aqueous HCl, methanol:H2O, and acetonitrile) were evaluated for use as catalysts in the methyl esterification of stearic acid. Optimum conditions were established for the impregnation of 0.5 g (w/w) of PTA on amorphous silica, under stirring at 150 rpm for 24 h, using 20 mL of 0.1 mol L-1 HCl as the solvent. After calcination at 200 ºC, high conversions were obtained under mild reaction conditions, resulting in high turnover numbers. The catalyst was evaluated in ten catalytic cycles of use, where the activity was reduced only slightly, attesting its stability and the possibility to apply it to industrial production of methylesters.
Resumo:
Enzymatic conversion of gaseous substrates into products in aquo-restricted media, using enzymes or whole cells (free and immobilized) as biocatalysts, constitutes a promising technology for the development of clearer processes. Solid-gas systems offer high production rates for minimal plant sizes, allow important reduction of treated volumes, and permit simplified downstream processes. In this review article, principles and applications of solid-gas biocatalysis are discussed. Comparisons of its advantages and disadvantages with those of the organic- and aqueous-phase reactions are also presented herein.
Resumo:
This work evaluates the immobilization of Candida antarctica lipase (Fraction B) using poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles as support. The effects of immobilization time (30-150 min) and pH (5-10) on lipase loading were evaluated. The stability of the immobilized enzyme towards temperature (40, 60, and 80 ºC), reuse and storage (at 4 ºC) were also determined. Furthermore, to assess its potential application in a system of interest, the immobilized lipase was used as a catalyst in the esterification of geraniol with oleic acid. The results indicated a time of 120 minutes and pH of 7 as optimal for immobilization. A 21 hour exposure of the PHBV-lipase derivative to 60 ºC showed a 33% reduction of the initial activity while storage at 4 ºC led to a residual activity (5% of the original activity). The derivative was used without significant loss of activity for 4 successive cycles. The use of the immobilized lipase as a catalyst in the production of geranyl oleate led to about 88% conversion of the initial reactants to products.
Resumo:
Poly(3-hydroxybutyrate), PHB, is a polymer with broad potential applications because of its biodegradability and biocompatibility. However, its high crystallinity is a limiting factor for many applications. To overcome this drawback, one strategy currently employed involves the reduction of the molecular weight of PHB with the concomitant formation of end-functionalized chains, such as those obtained via glycolysis. The glycolysis of PHB can be catalyzed by acid, base, or organometallic compounds. However, to our knowledge, there are no reports regarding PHB glycolysis catalyzed enzymatically. Among the major types of enzymes used in biocatalysis, the lipases stand out because they have the ability to catalyze reactions in both aqueous and organic media. Thus, in this study, we performed the enzymatic glycolysis of PHB using the lipase Amano PS (Pseudomonas cepacia) with ethane-1,2-diol (ethylene glycol) as the functionalizing agent. The results indicated that the glycolysis was successful and afforded hydroxyl-terminated oligomeric PHB polyols. Nuclear magnetic resonance spectra of the products showed characteristic signals for the terminal hydroxyl groups of the polyols, while thermogravimetric and differential scanning calorimetry analyses confirmed an increase in the thermal stability and a decrease in the crystallinity of the polyols compared with the starting PHB polymer, which were both attributed to the reduction in the molecular weight due to glycolysis.