979 resultados para Environmental Science(all)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The origin of ferroelectricity in KH2PO4 (KDP) is studied by first-principles electronic structure calculations. In the low-temperature phase, the collective off-centre ordering of the protons is accompanied by an electronic charge delocalization from the near and localization at the far oxygen within the O-H...O bonds. Electrostatic forces. then, push the K+ ions towards off-centre positions, and induce a macroscopic polarization. The analysis of the correlation between different geometrical and electronic quantities, in connection with experimental data. supports the idea that the role of tunnelling in isotopic effects is irrelevant. Instead, geometrical quantum effects appear to play a central role. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Field configured assembly is a programmable force field method that permits rapid, "hands-free" manipulation, assembly, and integration of mesoscale objects and devices. In this method, electric fields, configured by specific addressing of receptor and counter electrode sites pre-patterned at a silicon chip substrate, drive the field assisted transport, positioning, and localization of mesoscale devices at selected receptor locations. Using this approach, we demonstrate field configured deterministic and stochastic self-assembly of model mesoscale devices, i.e., 50 mum diameter, 670 nm emitting GaAs-based light emitting diodes, at targeted receptor sites on a silicon chip. The versatility of the field configured assembly method suggests that it is applicable to self-assembly of a wide variety of functionally integrated nanoscale and mesoscale systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The configuration interaction (CI) approach to quantum chemical calculations is a well-established means of calculating accurately the solution to the Schrodinger equation for many-electron systems. It represents the many-body electron wavefunction as a sum of spin-projected Slater determinants of orthogonal one-body spin-orbitals. The CI wavefunction becomes the exact solution of the Schrodinger equation as the length of the expansion becomes infinite, however, it is a difficult quantity to visualise and analyse for many-electron problems. We describe a method for efficiently calculating the spin-averaged one- and two-body reduced density matrices rho(psi)((r) over bar; (r) over bar' ) and Gamma(psi)((r) over bar (1), (r) over bar (2); (r) over bar'(1), (r) over bar'(2)) of an arbitrary CI wavefunction Psi. These low-dimensional functions are helpful tools for analysing many-body wavefunctions; we illustrate this for the case of the electron-electron cusp. From rho and Gamma one can calculate the matrix elements of any one- or two-body spin-free operator (O) over cap. For example, if (O) over cap is an applied electric field, this field can be included into the CI Hamiltonian and polarisation or gating effects may be studied for finite electron systems. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of the crystalline orientation of the STM tip in the generation of metal clusters is studied by atom dynamics simulations. When a (111) facet is facing the surface, the process is accompanied by a perturbation of the surface stronger than that observed for more open tip structures. This implies a technological application: the possibility of orienting a nanocrystallite deposited on a tip according to the changes observed in the force on the tip.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal nanoclusters can be produced cheaply and precisely in an electrochemical environment. Experimentally this method works in some systems, but not in others, and the unusual stability of the clusters has remained a mystery. We have simulated the deposition of the clusters using classical molecular dynamics and studied their stability by grand-canonical Monte Carlo simulations. We find that electrochemically stable clusters occur only in those cases where the two metals involved form stable alloys.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A total energy tight-binding model with a basis of just one s state per atom is introduced. It is argued that this simplest of all tight-binding models provides a surprisingly good description of the structural stability and elastic constants of noble metals. By assuming inverse power scaling laws for the hopping integrals and the repulsive pair potential, it is shown that the density matrix in a perfect primitive crystal is independent of volume, and structural energy differences and equations of state are then derived analytically. The model is most likely to be of use when one wishes to consider explicitly and self-consistently the electronic and atomic structures of a generic metallic system, with the minium of computation expense. The relationship to the free-electron jellium model is described. The applicability of the model to other metals is also considered briefly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

currently in press. This is the first published attempt to engineer QoS into a contention-based MAC layer protocol. The work was based on a cross-layer approach to providing programmability into wireless LANs. The work arose from an EPSRC grant in the "programmable networks" call, with Philips / STM research in Italy (Dr Melpignano). Subsequent follow-on includes the formation of a spin-out company (TOM) based on the idea.