1000 resultados para Energy
Resumo:
A potential energy model is developed for turbulent entrainment in the absence of mean shear in a linearly stratified fluid. The relation between the entrainment distance D and the time t and the relation between dimensionless entrainment rate E and the local Richardson number are obtained. An experiment is made for examination. The experimental results are in good agreement with the model, in which the dimensionless entrainment distance D is given by DBAR = A(i)(SBAR)-1/4(fBAR)1/2(tBAR)1/8, where A(i) is the proportional coefficient, S is the dimensionless stroke, fBAR is the dimensionless frequency of the grid oscillation, tBAR the dimensionless time.
Resumo:
Describes a series of experiments in the Joint European Torus (JET), culminating in the first tokamak discharges in deuterium-tritium fuelled mixture. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. The objectives were: (i) to produce more than one megawatt of fusion power in a controlled way; (ii) to validate transport codes and provide a basis for accurately predicting the performance of deuterium-tritium plasmas from measurements made in deuterium plasmas; (iii) to determine tritium retention in the torus systems and to establish the effectiveness of discharge cleaning techniques for tritium removal; (iv) to demonstrate the technology related to tritium usage; and (v) to establish safe procedures for handling tritium in compliance with the regulatory requirements. A single-null X-point magnetic configuration, diverted onto the upper carbon target, with reversed toroidal magnetic field was chosen. Deuterium plasmas were heated by high power, long duration deuterium neutral beams from fourteen sources and fuelled also by up to two neutral beam sources injecting tritium. The results from three of these high performance hot ion H-mode discharges are described: a high performance pure deuterium discharge; a deuterium-tritium discharge with a 1% mixture of tritium fed to one neutral beam source; and a deuterium-tritium discharge with 100% tritium fed to two neutral beam sources. The TRANSP code was used to check the internal consistency of the measured data and to determine the origin of the measured neutron fluxes. In the best deuterium-tritium discharge, the tritium concentration was about 11% at the time of peak performance, when the total neutron emission rate was 6.0 × 1017 neutrons/s. The integrated total neutron yield over the high power phase, which lasted about 2 s, was 7.2 × 1017 neutrons, with an accuracy of ±7%. The actual fusion amplification factor, QDT was about 0.15
Resumo:
n the authors' previous paper, the Strain Energy Density Ratio (SEDR) criterion was proposed. As an example of applications, it was used to predict cracking direction of mixed-mode fracture in a random short fibre laminated composite.
Resumo:
This paper points out that viscosity can induce mode splitting in a uniform infinite cylinder of an incompressible fluid with self-gravitation, and that the potential energy criterion cannot be appropriate to all normal modes obtained, i.e., there will be stable modes with negative potential energy (<0). Therefore the condition >0 is not necessary, although sufficient, for the stability of a mode in an incompressible static fluid or magnetohydrodynamics (MHD) system, which is a correction of both Hare's [Philos. Mag. 8, 1305 (1959)] and Chandrasekhar's [Hydrodynamic and Hydromagnetic Stability (Oxford U.P., Oxford, 1961), p. 604] stability criterion for a mode. These results can also be extended to compressible systems with a polytropic exponent.
Resumo:
In this paper we discuss coupling processes between a magnetic field and an unsteady plasma motion, and analyze the features of energy storage and conversions in active region. It is pointed out that the static force-free field is insufficient for a discussion of storage processes, and also the pure unsteady plasma rotation is not a perfect approach. In order to analyze the energy storage, we must consider the addition of poloidal plasma motion. The paper shows that because the unsteady poloidal flow is added and coupling occurs between the magnetic field and both the toroidal and the poloidal plasma flows, an unsteady process is maintained which changes the force-free factor with time. Hence, the energy in the lower levels can be transferred to the upper levels, and a considerable energy can be stored in the active region. Finally, another storage process is given which is due to the pure poloidal flow. The article shows that even if there is no twisted magnetic line of force, the energy in the lower levels may still be transferred to the upper levels and stored there.
Resumo:
In this paper, a complete set of MHD equations have been solved by numerical calculations in an attempt to study the dynamical evolutionary processes of the initial equilibrium configuration and to discuss the energy storage mechanism of the solar atmosphere by shearing the magnetic field. The initial equilibrium configuration with an arch bipolar potential field obtained from the numerical solution is similar to the configuration in the vicinity of typical solar flare before its eruption. From the magnetic induction equation in the set of MHD equations and dealing with the non-linear coupling effects between the flow field and magnetic field, the quantitative relationship has been derived for their dynamical evolution. Results show that plasma shear motion at the bottom of the solar atmosphere causes the magnetic field to shear; meanwhile the magnetic field energy is stored in local regions. With the increase of time the local magnetic energy increases and it may reach an order of 4×10^25 J during a day. Thus the local storage of magnetic energy is large enough to trigger a big solar flare and can be considered as the energy source of solar flares. The energy storage mechanism by shearing the magnetic field can well explain the slow changes in solar active regions.
Resumo:
boundary-layer flows, the skin friction and wall heat-transfer are higher and the
Resumo:
thermal conduction, and acoustic wave propagation are included. This
Resumo:
The strain energy density criterion due to Sih is used to predict fracture loads of two thin plates subjected to large elastic-plastic deformation. The prediction is achieved with a finite element analysis which is based on Hill's variational principle for incremental deformations capable of solving gross yielding problems involving arbitrary amounts of deformation. The computed results are in excellent agreement with those obtained in Sih's earlier analysis and with an experimental observation.