977 resultados para Emissions Reduction
Reducing Motor Vehicle Greenhouse Gas Emissions in a Non-California State: A Case Study of Minnesota
Resumo:
The embodied energy (EE) and gas emissions of four design alternatives for an embankment retaining wall system are analyzed for a hypothetical highway construction project. The airborne emissions considered are carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2O), sulphur oxides (SO X), and nitrogen oxides (NO X). The process stages considered in this study are the initial materials production, transportation of construction machineries and materials, machinery operation during installation, and machinery depreciations. The objectives are (1) to determine whether there are statistically significant differences among the structural alternatives; (2) to understand the relative proportions of impacts for the process stages within each design; (3) to contextualize the impacts to other aspects in life by comparing the computed EE values to household energy consumption and car emission values; and (4) to examine the validity of the adopted EE as an environmental impact indicator through comparison with the amount of gas emissions. For the project considered in this study, the calculated results indicate that propped steel sheet pile wall and minipile wall systems have less embodied energy and gas emissions than cantilever steel tubular wall and secant concrete pile wall systems. The difference in CO 2 emission for the retaining wall of 100 m length between the most and least environmentally preferable wall design is equivalent to an average 2.0 L family car being driven for 6.2 million miles (or 62 cars with a mileage of 10,000 miles/year for 10 years). The impacts in construction are generally notable and careful consideration and optimization of designs will reduce such impacts. The use of recycled steel or steel pile as reinforcement bar is effective in reducing the environmental impact. The embodied energy value of a given design is correlated to the amount of gas emissions. © 2011 American Society of Civil Engineers.
Resumo:
This paper extends a state projection method for structure preserving model reduction to situations where only a weaker notion of system structure is available. This weaker notion of structure, identifying the causal relationship between manifest variables of the system, is especially relevant is settings such as systems biology, where a clear partition of state variables into distinct subsystems may be unknown, or not even exist. The resulting technique, like similar approaches, does not provide theoretical performance guarantees, so an extensive computational study is conducted, and it is observed to work fairly well in practice. Moreover, conditions characterizing structurally minimal realizations and sufficient conditions characterizing edge loss resulting from the reduction process, are presented. ©2009 IEEE.
Resumo:
This paper describes the conceptual ideas, the theoretical validation, the laboratory testing and the field trials of a recently patented fuel-air mixing device for use in high-pressure ratio, low emissions, gaseous-fueled gas turbines. By making the fuel-air mixing process insensitive to pressure fluctuations in the combustion chamber, it is possible to avoid the common problem of positive feedback between mixture strength and the unsteady combustion process. More specifically, a mixing duct has been designed such that fuel-air ratio fluctuations over a wide range of frequencies can be damped out by passive design means. By scaling the design in such a way that the range of damped frequencies covers the frequency spectrum of the acoustic modes in the combustor, the instability mechanism can be removed. After systematic development, this design philosophy was successfully applied to a 35:1 pressure ratio aeroderivative gas turbine yielding very low noise levels and very competitive NOx and CO measurements. The development of the new premixer is described from conceptual origins through analytic and CFD evaluation to laboratory testing and final field trials. Also included in this paper are comments about the practical issues of mixing, flashback resistance and autoignition.
Resumo:
As a potential poverty reduction and climate change strategy, this paper considers the advantages and disadvantages of using renewable energy technologies for rural electrification in developing countries. Although each case must be considered independently, given a reliable fuel source, renewable energy mini-grids powered by biomass gasifiers or micro-hydro plants appear to be the favoured option due to their lower levelised costs, provision of AC power, potential to provide a 24. h service and ability to host larger capacity systems that can power a wide range of electricity uses. Sustainability indicators are applied to three case studies in order to explore the extent to which sustainable welfare benefits can be created by renewable energy mini-grids. Policy work should focus on raising awareness about renewable energy mini-grids, improving institutional, technical and regulatory frameworks and developing innovative financing mechanisms to encourage private sector investments. Establishing joint technology and community engagement training centres should also be encouraged. © 2011 Elsevier Ltd.
Resumo:
The potential adverse human health and climate impacts of emissions from UK airports have become a significant political issue, yet the emissions, air quality impacts and health impacts attributable to UK airports remain largely unstudied. We produce an inventory of UK airport emissions - including aircraft landing and takeoff (LTO) operations and airside support equipment - with uncertainties quantified. The airports studied account for more than 95% of UK air passengers in 2005. We estimate that in 2005, UK airports emitted 10.2 Gg [-23 to +29%] of NOx, 0.73 Gg [-29 to +32%] of SO2, 11.7 Gg [-42 to +77%] of CO, 1.8 Gg [-59 to +155%] of HC, 2.4 Tg [-13 to +12%] of CO2, and 0.31 Gg [-36 to +45%] of PM2.5. This translates to 2.5 Tg [-12 to +12%] CO2-eq using Global Warming Potentials for a 100-year time horizon. Uncertainty estimates were based on analysis of data from aircraft emissions measurement campaigns and analyses of aircraft operations.The First-Order Approximation (FOA3) - currently the standard approach used to estimate particulate matter emissions from aircraft - is compared to measurements and it is shown that there are discrepancies greater than an order of magnitude for 40% of cases for both organic carbon and black carbon emissions indices. Modified methods to approximate organic carbon emissions, arising from incomplete combustion and lubrication oil, and black carbon are proposed. These alterations lead to factor 8 and a 44% increase in the annual emissions estimates of black and organic carbon particulate matter, respectively, leading to a factor 3.4 increase in total PM2.5 emissions compared to the current FOA3 methodology. Our estimates of emissions are used in Part II to quantify the air quality and health impacts of UK airports, to assess mitigation options, and to estimate the impacts of a potential London airport expansion. © 2011 Elsevier Ltd.
Influence of film cooling hole angles and geometries on aerodynamic loss and net heat flux reduction
Resumo:
Turbine design engineers have to ensure that film cooling can provide sufficient protection to turbine blades from the hot mainstream gas, while keeping the losses low. Film cooling hole design parameters include inclination angle (α), compound angle (β ), hole inlet geometry and hole exit geometry. The influence of these parameters on aerodynamic loss and net heat flux reduction is investigated, with loss being the primary focus. Low-speed flat plate experiments have been conducted at momentum flux ratios of IR = 0.16, 0.64 and 1.44. The film cooling aerodynamic mixing loss, generated by the mixing of mainstream and coolant, can be quantified using a three-dimensional analytical model that has been previously reported by the authors. The model suggests that for the same flow conditions, the aerodynamic mixing loss is the same for holes with different α and β but with the same angle between the mainstream and coolant flow directions (angle κ). This relationship is assessed through experiments by testing two sets of cylindrical holes with different α and β : one set with κ = 35°, another set with κ = 60°. The data confirm the stated relationship between α, β, κ and the aerodynamic mixing loss. The results show that the designer should minimise κ to obtain the lowest loss, but maximise β to achieve the best heat transfer performance. A suggestion on improving the loss model is also given. Five different hole geometries (α =35.0°, β =0°) were also tested: cylindrical hole, trenched hole, fan-shaped hole, D-Fan and SD-Fan. The D-Fan and the SD-Fan have similar hole exits to the fan-shaped hole but their hole inlets are laterally expanded. The external mixing loss and the loss generated inside the hole are compared. It was found that the D-Fan and the SD-Fan have the lowest loss. This is attributed to their laterally expanded hole inlets, which lead to significant reduction in the loss generated inside the holes. As a result, the loss of these geometries is ≈ 50 % of the loss of the fan-shaped hole at IR = 0.64 and 1.44. Copyright © 2011 by ASME.
Resumo:
Half of the world's annual production of steel is used in constructing buildings and infrastructure. Producing this steel causes significant amounts of carbon dioxide to be released into the atmosphere. Climate change experts recommend this amount be halved by 2050; however steel demand is predicted to have doubled by this date. As process efficiency improvements will not reach the required 75% reduction in emissions per unit steel output, new methods must be examined to deliver service using less steel production. To apply such methods successfully to construction, it must first be known where steel is used currently within the industry. This information is not available so a methodology is proposed to estimate it from known data. Results are presented for steel flows by product for ten construction sectors for both the UK and the world in 2006. An estimate for steel use within a 'typical' building is also published for the first time. Industrial buildings and utility infrastructure are identified as the largest end-uses of steel, while superstructure is confirmed as the main use of steel in a building. The results highlight discrepancies in previous steel estimates and life-cycle assessments, and will inform future research on lowering demand for steel, hence reducing carbon emissions. © 2012 Elsevier B.V. All rights reserved.