1000 resultados para Elevação artifial
Resumo:
Estudou-se o efeito de vários níveis de compactação na densidade do solo, porosidade total e resistência à penetração, objetivando determinar o nível que impede o desenvolvimento das raízes de plantas de soja. O trabalho foi realizado em casa de vegetação, com amostras deformadas do horizonte superficial de uma terra roxa estruturada e de um latossolo roxo, controlando os níveis de compactação e o teor de água. A influência da compactação no desenvolvimento das raízes foi avaliada um mês após a germinação. Os valores de densidade do solo, para um mesmo nível de compactação, foram maiores para a terra roxa estruturada. O teor de água ótimo para a compactação foi de 21,0% para a terra roxa estruturada e de 29,8 para o latossolo roxo. A compactação artificial do solo acarretou aumento da resistência à penetração e diminuição da porosidade total. A elevação da sua densidade de 0,90 para 1,30 kg/m³ para a terra roxa estruturada, e de 0,90 para 1,23 kg/m³ para o latossolo roxo, promoveu, respectivamente, diminuição de 39 e de 41% na massa seca das raízes. O desenvolvimento das raízes das plantas ficou impedido quando a densidade do solo atingiu valores de 1,30 e 1,23 kg/m³, respectivamente, para a terra roxa estruturada e o latossolo roxo.
Resumo:
This document proposes to describe a pilot plant for oil wells equipped with plunger lift. In addition to a small size (21,5 meters) and be on the surface, the plant s well has part of its structure in transparent acrylic, allowing easy visualization of phenomena inherent to the method. The rock formation where the well draws its pilot plant fluids (water and air) is simulated by a machine room where they are located the compressor and water pump for the production of air and water. To keep the flow of air and water with known and controlled values the lines that connect the machine room to the wellhole are equipped with flow sensors and valves. It s developed a supervisory system that allows the user a real-time monitoring of pressures and flow rates involved. From the supervisor is still allowed the user can choose how they will be controlled cycles of the process, whether by time, pressure or manually, and set the values of air flow to the water used in cycles. These values can be defined from a set point or from the percentage of valve opening. Results from tests performed on the plant using the most common forms of control by time and pressure in the coating are showed. Finally, they are confronted with results generated by a simulator configured with the the pilot plant s feature
Resumo:
The method of artificial lift of progressing cavity pump is very efficient in the production of oils with high viscosity and oils that carry a great amount of sand. This characteristic converted this lift method into the second most useful one in oil fields production. As it grows the number of its applications it also increases the necessity to dominate its work in a way to define it the best operational set point. To contribute to the knowledge of the operational method of artificial lift of progressing cavity pump, this work intends to develop a computational simulator for oil wells equipped with an artificial lift system. The computational simulator of the system will be able to represent its dynamic behavior when submitted to the various operational conditions. The system was divided into five subsystems: induction motor, multiphase flows into production tubing, rod string, progressing cavity pump and annular tubing-casing. The modeling and simulation of each subsystem permitted to evaluate the dynamic characteristics that defined the criteria connections. With the connections of the subsystems it was possible to obtain the dynamic characteristics of the most important arrays belonging to the system, such as: pressure discharge, pressure intake, pumping rate, rod string rotation and torque applied to polish string. The shown results added to a friendly graphical interface converted the PCP simulator in a great potential tool with a didactic characteristic in serving the technical capability for the system operators and also permitting the production engineering to achieve a more detail analysis of the dynamic operational oil wells equipped with the progressing cavity pump
Resumo:
Amongst the results of the AutPoc Project - Automation of Wells, established between UFRN and Petrobras with the support of the CNPq, FINEP, CTPETRO, FUNPEC, was developed a simulator for equipped wells of oil with the method of rise for continuous gas-lift. The gas-lift is a method of rise sufficiently used in production offshore (sea production), and its basic concept is to inject gas in the deep one of the producing well of oil transform it less dense in order to facilitate its displacement since the reservoir until the surface. Based in the use of tables and equations that condense the biggest number of information on characteristics of the reservoir, the well and the valves of gas injection, it is allowed, through successive interpolations, to simulate representative curves of the physical behavior of the existing characteristic variable. With a simulator that approaches a computer of real the physical conditions of an oil well is possible to analyze peculiar behaviors with very bigger speeds, since the constants of time of the system in question well are raised e, moreover, to optimize costs with assays in field. The simulator presents great versatility, with prominance the analysis of the influence of parameters, as the static pressure, relation gas-liquid, pressure in the head of the well, BSW (Relation Basic Sediments and Water) in curves of request in deep of the well and the attainment of the curve of performance of the well where it can be simulated rules of control and otimization. In moving the rules of control, the simulator allows the use in two ways of simulation: the application of the control saw software simulated enclosed in the proper simulator, as well as the use of external controllers. This implies that the simulator can be used as tool of validation of control algorithms. Through the potentialities above cited, of course one another powerful application for the simulator appears: the didactic use of the tool. It will be possible to use it in formation courses and recycling of engineers
Resumo:
Attacks to devices connected to networks are one of the main problems related to the confidentiality of sensitive data and the correct functioning of computer systems. In spite of the availability of tools and procedures that harden or prevent the occurrence of security incidents, network devices are successfully attacked using strategies applied in previous events. The lack of knowledge about scenarios in which these attacks occurred effectively contributes to the success of new attacks. The development of a tool that makes this kind of information available is, therefore, of great relevance. This work presents a support system to the management of corporate security for the storage, retrieval and help in constructing attack scenarios and related information. If an incident occurs in a corporation, an expert must access the system to store the specific attack scenario. This scenario, made available through controlled access, must be analyzed so that effective decisions or actions can be taken for similar cases. Besides the strategy used by the attacker, attack scenarios also exacerbate vulnerabilities in devices. The access to this kind of information contributes to an increased security level of a corporation's network devices and a decreased response time to occurring incidents
Resumo:
A disponibilidade de informações relativas à oferta, preços e sazonalidade do abacaxi é um fator de interesse tanto para produtores quanto para atacadistas, pois podem contribuir para melhor planejamento da época de colheita e comercialização. Dessa maneira, o presente trabalho buscou conhecer a sazonalidade do preço e da quantidade do abacaxi comercializado na CEAGESP - SP, no período de setembro de 2005 a março de 2006. Foram obtidos através de entrevistas aos atacadistas, dados referentes à origem de cada cultivar em estudo, o preço pago ao produtor, o preço de venda praticado pelos atacadistas e a quantidade de frutos recebida no dia. Com o objetivo de compreender o processo de comercialização das cultivares de abacaxi 'Smooth Cayenne' e 'Pérola', foram aplicados questionários aos vendedores de três empresas atacadistas. Através das informações obtidas, sugere-se aos produtores de abacaxi 'Smooth Cayenne' o escalonamento da produção no período de novembro a fevereiro, preferencialmente de maneira associativista. Os três atacadistas de abacaxi entrevistados vislumbram uma estabilidade na quantidade comercializada de abacaxi na CEAGESP, com previsão de crescimento para a cultivar 'Pérola' e redução para a cultivar 'Smooth Cayenne'. No período de 12 de setembro de 2005 a 20 de março de 2006, observou-se uma estabilidade de preços pagos ao produtor para ambas as cultivares, com elevação de preços entre os dias 23 de janeiro a 06 de março de 2006 para a cultivar 'Pérola' e entre os dias 06 de fevereiro a 06 de março de 2006 para a cultivar 'Smooth Cayenne'. Os atacadistas consideram a cultivar 'Smooth Cayenne' mais valorizada nos meses de novembro a janeiro e a cultivar 'Pérola' de março a junho e de novembro a dezembro. Pelo cenário de estabilização do mercado de abacaxi, torna-se fundamental a garantia de sabor monitorada pelas associações de produtores em parceria com o Centro de Qualidade em Horticultura (CQH - CEAGESP) e atacadistas, com destaque para a cultivar 'Smooth Cayenne'.
Resumo:
O procedimento de uniformização e elevação do teor de água das sementes é recomendável para se obter resultados uniformes e confiáveis, em testes para a qualidade fisiológica de sementes, como o envelhecimento acelerado e a deterioração controlada. O trabalho teve como objetivo avaliar a qualidade fisiológica de sementes de milho, após a hidratação sob diferentes métodos e temperaturas, visando à elevação do teor de água para 15; 20 e 25%. Empregou-se o delineamento inteiramente casualizado, em esquema fatorial 4 x 2, com quatro repetições. Os tratamentos foram constituídos de quatro métodos de hidratação (substrato úmido, atmosfera úmida, imersão em água e adição da quantidade de água requerida) sob duas temperaturas (20 e 30 °C). Após a hidratação, as sementes foram submetidas às seguintes determinações: teor de água, condutividade elétrica, porcentagens de germinação e de plântulas normais na primeira contagem do teste de germinação, massas secas das porções aérea, radicular e total das plântulas obtidas na primeira contagem. O método da atmosfera úmida proporciona redução da qualidade fisiológica das sementes de milho nos três teores de água. A temperatura de 30 °C e o método da imersão direta em água não alteram a qualidade fisiológica das sementes de milho, mostrando-se adequados para a hidratação visando à elevação do teor de água para 15; 20 e 25%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Currently, there are several power converter topologies applied to wind power generation. The converters allow the use of wind turbines operating at variable speed, enabling better use of wind forces. The high performance of the converters is being increasingly demanded, mainly because of the increase in the power generation capacity by wind turbines, which gave rise to various converter topologies, such as parallel or multilevel converters. The use of converters allow effective control of the power injected into the grid, either partially, for the case using partial converter, or total control for the case of using full converter. The back-to-back converter is one of the most used topologies in the market today, due to its simple structure, with few components, contributing to robust and reliable performance. In this work, is presented the implementation of a wind cogeneration system using a permanent magnet synchronous generator (PMSG) associated with a back-to-back power converter is proposed, in order to inject active power in an electric power system. The control strategy of the active power delivered to the grid by cogeneration is based on the philosophy of indirect control
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The continuous gas lift method is the main artificial lifting method used in the oil industry for submarine wells, due to its robustness and the large range of flow rate that the well might operate. Nowadays, there is a huge amount of wells producing under this mechanism. This method of elevation has a slow dynamics due to the transients and a correlation between the injected gas rate and the of produced oil rate. Electronics controllers have been used to adjust many parameters of the oil wells and also to improve the efficiency of the gas lift injection system. This paper presents a intelligent control system applied to continuous gas injection in wells, based in production s rules, that has the target of keeping the wells producing during the maximum period of time, in its best operational condition, and doing automatically all necessary adjustments when occurs some disturbance in the system. The author also describes the application of the intelligent control system as a tool to control the flow pressure in the botton of the well (Pwf). In this case, the control system actuates in the surface control valve
Resumo:
The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat
Resumo:
The use of Progressing Cavity Pumps (PCPs) in artificial lift applications in low deep wells is becoming more common in the oil industry, mainly, due to its ability to pump heavy oils, produce oil with large concentrations of sand, besides present high efficiency when compared to other artificial lift methods. Although this system has been widely used as an oil lift method, few investigations about its hydrodynamic behavior are presented, either experimental or numeric. Therefore, in order to increase the knowledge about the BCP operational behavior, this work presents a novel computational model for the 3-D transient flow in progressing cavity pumps, which includes the relative motion between rotor and stator, using an element based finite volume method. The model developed is able to accurately predict the volumetric efficiency and viscous looses as well as to provide detailed information of pressure and velocity fields inside the pump. In order to predict PCP performance for low viscosity fluids, advanced turbulence models were used to treat, accurately, the turbulent effects on the flow, which allowed for obtaining results consistent with experimental values encountered in literature. In addition to the 3D computational model, a simplified model was developed, based on mass balance within cavities and on simplification on the momentum equations for fully developed flow along the seal region between cavities. This simplified model, based on previous approaches encountered in literature, has the ability to predict flow rate for a given differential pressure, presenting exactness and low CPU requirements, becoming an engineering tool for quick calculations and providing adequate results, almost real-time time. The results presented in this work consider a rigid stator PCP and the models developed were validated against experimental results from open literature. The results for the 3-D model showed to be sensitive to the mesh size, such that a numerical mesh refinement study is also presented. Regarding to the simplified model, some improvements were introduced in the calculation of the friction factor, allowing the application fo the model for low viscosity fluids, which was unsuccessful in models using similar approaches, presented in previous works
Resumo:
The pumping through progressing cavities system has been more and more employed in the petroleum industry. This occurs because of its capacity of elevation of highly viscous oils or fluids with great concentration of sand or other solid particles. A Progressing Cavity Pump (PCP) consists, basically, of a rotor - a metallic device similar to an eccentric screw, and a stator - a steel tube internally covered by a double helix, which may be rigid or deformable/elastomeric. In general, it is submitted to a combination of well pressure with the pressure generated by the pumping process itself. In elastomeric PCPs, this combined effort compresses the stator and generates, or enlarges, the clearance existing between the rotor and the stator, thus reducing the closing effect between their cavities. Such opening of the sealing region produces what is known as fluid slip or slippage, reducing the efficiency of the PCP pumping system. Therefore, this research aims to develop a transient three-dimensional computational model that, based on single-lobe PCP kinematics, is able to simulate the fluid-structure interaction that occurs in the interior of metallic and elastomeric PCPs. The main goal is to evaluate the dynamic characteristics of PCP s efficiency based on detailed and instantaneous information of velocity, pressure and deformation fields in their interior. To reach these goals (development and use of the model), it was also necessary the development of a methodology for generation of dynamic, mobile and deformable, computational meshes representing fluid and structural regions of a PCP. This additional intermediary step has been characterized as the biggest challenge for the elaboration and running of the computational model due to the complex kinematic and critical geometry of this type of pump (different helix angles between rotor and stator as well as large length scale aspect ratios). The processes of dynamic generation of meshes and of simultaneous evaluation of the deformations suffered by the elastomer are fulfilled through subroutines written in Fortan 90 language that dynamically interact with the CFX/ANSYS fluid dynamic software. Since a structural elastic linear model is employed to evaluate elastomer deformations, it is not necessary to use any CAE package for structural analysis. However, an initial proposal for dynamic simulation using hyperelastic models through ANSYS software is also presented in this research. Validation of the results produced with the present methodology (mesh generation, flow simulation in metallic PCPs and simulation of fluid-structure interaction in elastomeric PCPs) is obtained through comparison with experimental results reported by the literature. It is expected that the development and application of such a computational model may provide better details of the dynamics of the flow within metallic and elastomeric PCPs, so that better control systems may be implemented in the artificial elevation area by PCP
Resumo:
Há interesse em implantar o sistema plantio direto em áreas anteriormente cultivadas no sistema convencional ou sob pastagem, corrigindo a acidez com calagem superficial após a implantação do sistema. Essa prática pode ser possível desde que não haja impedimento físico do solo ao crescimento radicular. Nesse sentido, o gesso é uma alternativa para diminuição da atividade do Al3+ e aumento da saturação por bases (V), principalmente Ca2+, nas camadas do subsolo, podendo ser utilizado como produto complementar ao calcário. Este trabalho objetivou avaliar as alterações dos atributos químicos do solo (pH CaCl2, H + Al, Al3+, Ca2+, Mg2+, S-SO4(2-), V e teor de micronutrientes catiônicos) decorrentes da aplicação de calcário e de gesso agrícola em superfície em sistema plantio direto recém-implantado em região de inverno seco. O experimento foi conduzido em um Latossolo Vermelho distroférrico de Botucatu (SP). O delineamento experimental foi em blocos casualizados com parcelas subdivididas e quatro repetições. As parcelas foram constituídas por quatro doses de calcário dolomítico com PRNT de 71,2 % (0, 1.100, 2.700 e 4.300 kg ha-1), visando elevar a saturação por bases a 50, 70 e 90 %, respectivamente. As subparcelas foram constituídas pelas doses de gesso agrícola de 0 e 2.100 kg ha-1. Amostras de terra foram coletadas nas profundidades de 0-0,05, 0,05-0,10, 0,10-0,20, 0,20-0,40, 0,40-0,60 e 0-0,20 m, aos três, seis, 12 e 18 meses da aplicação dos produtos. A aplicação superficial de calcário diminuiu a acidez e elevou os teores de Ca e Mg trocável, principalmente nas camadas superficiais do solo. A aplicação de gesso agrícola aumentou os teores de Ca trocável e S-SO4(2-), e diminuiu os teores de Al no solo, contribuindo para que os efeitos da calagem superficial nas características químicas do solo alcançassem, de forma mais rápida, as camadas do subsolo. Os valores de saturação por bases obtidos na profundidade de 0-0,20 m com a calagem foram menores do que os estimados pelo método da elevação da saturação por bases, principalmente nas maiores doses, mesmo com a aplicação de gesso agrícola. A calagem em superfície não alterou os teores de micronutrientes na camada de 0-0,20 m de profundidade.