983 resultados para Electronic structure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWNTs) have been studied as a prominent class of high performance electronic materials for next generation electronics. Their geometry dependent electronic structure, ballistic transport and low power dissipation due to quasi one dimensional transport, and their capability of carrying high current densities are some of the main reasons for the optimistic expectations on SWNTs. However, device applications of individual SWNTs have been hindered by uncontrolled variations in characteristics and lack of scalable methods to integrate SWNTs into electronic devices. One relatively new direction in SWNT electronics, which avoids these issues, is using arrays of SWNTs, where the ensemble average may provide uniformity from device to device, and this new breed of electronic material can be integrated into electronic devices in a scalable fashion. This dissertation describes (1) methods for characterization of SWNT arrays, (2) how the electrical transport in these two-dimensional arrays depend on length scales and spatial anisotropy, (3) the interaction of aligned SWNTs with the underlying substrate, and (4) methods for scalable integration of SWNT arrays into electronic devices. The electrical characterization of SWNT arrays have been realized by polymer electrolyte-gated SWNT thin film transistors (TFTs). Polymer electrolyte-gating addresses many technical difficulties inherent to electrical characterization by gating through oxide-dielectrics. Having shown polymer electrolyte-gating can be successfully applied on SWNT arrays, we have studied the length scaling dependence of electrical transport in SWNT arrays. Ultrathin films formed by sub-monolayer surface coverage of SWNT arrays are very interesting systems in terms of the physics of two-dimensional electronic transport. We have observed that they behave qualitatively different than the classical conducting films, which obey the Ohm’s law. The resistance of an ultrathin film of SWNT arrays is indeed non-linear with the length of the film, across which the transport occurs. More interestingly, a transition between conducting and insulating states is observed at a critical surface coverage, which is called percolation limit. The surface coverage of conducting SWNTs can be manipulated by turning on and off the semiconductors in the SWNT array, leading to the operation principle of SWNT TFTs. The percolation limit depends also on the length and the spatial orientation of SWNTs. We have also observed that the percolation limit increases abruptly for aligned arrays of SWNTs, which are grown on single crystal quartz substrates. In this dissertation, we also compare our experimental results with a two-dimensional stick network model, which gives a good qualitative picture of the electrical transport in SWNT arrays in terms of surface coverage, length scaling, and spatial orientation, and briefly discuss the validity of this model. However, the electronic properties of SWNT arrays are not only determined by geometrical arguments. The contact resistances at the nanotube-nanotube and nanotube-electrode (bulk metal) interfaces, and interactions with the local chemical groups and the underlying substrates are among other issues related to the electronic transport in SWNT arrays. Different aspects of these factors have been studied in detail by many groups. In fact, I have also included a brief discussion about electron injection onto semiconducting SWNTs by polymer dopants. On the other hand, we have compared the substrate-SWNT interactions for isotropic (in two dimensions) arrays of SWNTs grown on Si/SiO2 substrates and horizontally (on substrate) aligned arrays of SWNTs grown on single crystal quartz substrates. The anisotropic interactions associated with the quartz lattice between quartz and SWNTs that allow near perfect horizontal alignment on substrate along a particular crystallographic direction is examined by Raman spectroscopy, and shown to lead to uniaxial compressive strain in as-grown SWNTs on single crystal quartz. This is the first experimental demonstration of the hard-to-achieve uniaxial compression of SWNTs. Temperature dependence of Raman G-band spectra along the length of individual nanotubes reveals that the compressive strain is non-uniform and can be larger than 1% locally at room temperature. Effects of device fabrication steps on the non-uniform strain are also examined and implications on electrical performance are discussed. Based on our findings, there are discussions about device performances and designs included in this dissertation. The channel length dependences of device mobilities and on/off ratios are included for SWNT TFTs. Time response of polymer-electrolyte gated SWNT TFTs has been measured to be ~300 Hz, and a proof-of-concept logic inverter has been fabricated by using polymer electrolyte gated SWNT TFTs for macroelectronic applications. Finally, I dedicated a chapter on scalable device designs based on aligned arrays of SWNTs, including a design for SWNT memory devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to grow ultrathin films layer-by-layer with well-defined epitaxial relationships has allowed research groups worldwide to grow a range of artificial films and superlattices, first for semiconductors, and now with oxides. In the oxides thin film research community, there have been concerted efforts recently to develop a number of epitaxial oxide systems grown on single crystal oxide substrates that display a wide variety of novel interfacial functionality, such as enhanced ferromagnetic ordering, increased charge carrier density, increased optical absorption, etc, at interfaces. The magnitude of these novel properties is dependent upon the structure of thin films, especially interface sharpness, intermixing, defects, and strain, layering sequence in the case of superlattices and the density of interfaces relative to the film thicknesses. To understand the relationship between the interfacial thin film oxide atomic structure and its properties, atomic scale characterization is required. Transmission electron microscopy (TEM) offers the ability to study interfaces of films at high resolution. Scanning transmission electron microscopy (STEM) allows for real space imaging of materials with directly interpretable atomic number contrast. Electron energy loss spectroscopy (EELS), together with STEM, can probe the local chemical composition as well as local electronic states of transition metals and oxygen. Both techniques have been significantly improved by aberration correctors, which reduce the probe size to 1 Å, or less. Aberration correctors have thus made it possible to resolve individual atomic columns, and possibly probe the electronic structure at atomic scales. Separately, using electron probe forming lenses, structural information such as the crystal structure, strain, lattice mismatches, and superlattice ordering can be measured by nanoarea electron diffraction (NED). The combination of STEM, EELS, and NED techniques allows us to gain a fundamental understanding of the properties of oxide superlattices and ultrathin films and their relationship with the corresponding atomic and electronic structure. In this dissertation, I use the aforementioned electron microscopy techniques to investigate several oxide superlattice and ultrathin film systems. The major findings are summarized below. These results were obtained with stringent specimen preparation methods that I developed for high resolution studies, which are described in Chapter 2. The essential materials background and description of electron microscopy techniques are given in Chapter 1 and 2. In a LaMnO3-SrMnO3 superlattice, we demonstrate the interface of LaMnO3-SrMnO3 is sharper than the SrMnO3-LaMnO3 interface. Extra spectral weights in EELS are confined to the sharp interface, whereas at the rougher interface, the extra states are either not present or are not confined to the interface. Both the structural and electronic asymmetries correspond to asymmetric magnetic ordering at low temperature. In a short period LaMnO3-SrTiO3 superlattice for optical applications, we discovered a modified band structure in SrTiO3 ultrathin films relative to thick films and a SrTiO3 substrate, due to charge leakage from LaMnO3 in SrTiO3. This was measured by chemical shifts of the Ti L and O K edges using atomic scale EELS. The interfacial sharpness of LaAlO3 films grown on SrTiO3 was investigated by the STEM/EELS technique together with electron diffraction. This interface, when prepared under specific conditions, is conductive with high carrier mobility. Several suggestions for the conductive interface have been proposed, including a polar catastrophe model, where a large built-in electric field in LaAlO3 films results in electron charge transfer into the SrTiO3 substrate. Other suggested possibilities include oxygen vacancies at the interface and/or oxygen vacancies in the substrate. The abruptness of the interface as well as extent of intermixing has not been thoroughly investigated at high resolution, even though this can strongly influence the electrical transport properties. We found clear evidence for cation intermixing through the LaAlO3-SrTiO3 interface with high spatial resolution EELS and STEM, which contributes to the conduction at the interface. We also found structural defects, such as misfit dislocations, which leads to increased intermixing over coherent interfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents theoretical investigations of the sub band structure and optical properties of semiconductor quantum wires. For the subband structure, we employ multiband effective-mass theory and the effective bond-orbital model both of which fully account for the band mixing and material anisotropy. We also treat the structure geometry in detail taking account of such effects as the compositional grading across material interfaces. Based on the subband structure, we calculate optical properties of quantum-wire structures. A recuring theme is the cross-over from one- to ~wo-dimensional behavior in these structures. This complicated behavior procludes the application of simple theoretical models to obtain the electronic structure. In particular, we calculate laser properties of quantum wires grown in V-grooves and find enhanced performance compared with quantum-well lasers. We also investigate optical anisotropy in quantum-wire arrays and propose an electro-optic device based on such structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and assessing their selectivity in separating metallic and semiconducting SWNTs. Chapter 4 describes how optical phonon population extinction lifetime is affected by covalent functionalization and doping and includes discussions on static Raman linewidths. Increasing defect concentration is shown to decrease G-band phonon population lifetime and increase G-band linewidth. Doping only increases G-band linewidth, leaving non-equilibrium population decay rate unaffected. Phonon mediated electron scattering is especially strong in nanotubes making optical phonon decay of interest for device applications. Optical phonon decay also has implications on device thermal management. Chapter 5 treats doping of graphene showing ambient air can lead to inadvertent Fermi level shifts which exemplifies the sensitivity that sp2-bonded carbon nanostructures have to chemical doping through sidewall adsorption. Removal of this doping allows for an investigation of electron-phonon coupling dependence on temperature, also of interest for devices operating above room temperature. Finally, in Chapter 6, utilizing the information obtained in previous chapters, single carbon nanotube diodes are fabricated and characterized. Electrical performance shows these diodes are nearly ideal and photovoltaic response yields 1.4 nA and 205 mV of short circuit current and open circuit voltage from a single nanotube device. A summary and discussion of future directions in Chapter 7 concludes my work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How can we control the experimental conditions towards the isolation of specific structures? Why do particular architectures form? These are some challenging questions that synthetic chemists try to answer, specifically within polyoxometalate (POM) chemistry, where there is still much unknown regarding the synthesis of novel molecular structures in a controlled and predictive manner. This work covers a wide range of POM chemistry, exploring the redox self-assembly of polyoxometalate clusters, using both “one-pot”, flow and hydrothermal conditions. For this purpose, different vanadium, molybdenum and tungsten reagents, heteroatoms, inorganic salts and reducing agents have been used. The template effect of lone-pair containing pyramidal heteroatoms has been investigated. Efforts to synthesize new POM clusters displaying pyramidal heteroanions (XO32-, where X= S, Se, Te, P) are reported. The reaction of molybdenum with vanadium in the presence of XO32- heteroatoms is explored, showing how via the cation and experimental control it is possible to direct the self-assembly process and to isolate isostructural compounds. A series of four isostructural (two new, namely {Mo11V7P} and {Mo11V7Te} and two already known, namely {Mo11V7Se} and {Mo11V7S} disordered egg-shaped Polyoxometalates have been reported. The compounds were characterized by X-ray structural analysis, TGA, UV-Vis, FT-IR, Elemental and Flame Atomic Absorption Spectroscopy (FAAS) analysis and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Cyclic Voltammetry measurements have been carried out in all four compounds showing the effect of the ionic density of the heteroatom on the potential. High-Resolution ESI-MS studies have revealed that the structures retain their integrity in solution. Efforts to synthesize new mixed-metal compounds led to isolation, structural, and electronic characterization of the theoretically predicted, but experimentally elusive δ-isomer of the Keggin polyoxometalate cluster anion, {H2W4V9O33(C6H13NO3)}, by the reaction of tungstate(VI) and vanadium(V) with triethanolammonium ions (TEAH), acting as a tripodal ligand grafted to the surface of the cluster. Control experiments (in the absence of the organic compound) have proven that the tripodal ligand plays crucial role on the formation of the isomer. The six vanadium metal centres, which consist the upper part of the cluster, are bonded to the “capping” TEA tripodal ligand. This metal-ligand bonding directs and stabilises the formation of the final product. The δ-Keggin species was characterized by single-crystal X-ray diffraction, FT-IR, UV-vis, NMR and ESI-MS spectrometry. Electronic structure and structure-stability correlations were evaluated by means of DFT calculations. The compounds exhibited photochromic properties by undergoing single-crystal-to-single-crystal (SC-SC) transformations and changing colour under light. Non-conventional synthetic approaches are also used for the synthesis of the POM clusters comparing the classical “one-pot” reaction conditions and exploring the synthetic parameters of the synthesis of POM compounds. Reactions under hydrothermal and flow conditions, where single crystals that depend on the solubility of the minerals under hot water and high pressure can be synthesized, resulted in the isolation of two isostructural compounds, namely, {Mo12V3Te5}. The compound isolated from a continuous processing method, crystallizes in a hexagonal crystal system, forming a 2D porous plane net, while the compound isolated using hard experimental conditions (high temperature and pressure) crystallizes in monoclinic system, resulting in a different packing configuration. Utilizing these alternative synthetic approaches, the most kinetically and thermodynamically compounds would possibly be isolated. These compounds were characterised by single-crystal X-ray diffraction, FT-IR and UV-vis spectroscopy. Finally, the redox-controlled driven oscillatory template exchange between phosphate (P) and vanadate (V) anions enclosed in an {M18O54(XO4)2} cluster is further investigated using UV-vis spectroscopy as a function of reaction time, showed that more than six complete oscillations interconverting the capsule species present in solution from {P2M18} to {V2M18} were possible, provided that a sufficient concentration of the TEA reducing agent was present in solution. In an effort to investigate the periodicity of the exchange of the phosphate and vanadate anions, time dependent Uv-vis measurements were performed for a period at a range of 170-550 hours. Different experimental conditions were also applied in order to investigate the role of the reducing agent, as well as the effect of other experimental variables on the oscillatory system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon-supported Pt–Sn catalysts commonly contain Pt–Sn alloy and/or Pt–Sn bimetallic systems (Sn oxides). Nevertheless, the origin of the promotion effect due to the presence of Sn in the Pt–Sn/C catalyst towards ethanol oxidation in acid media is still under debate and some contradictions. Herein, a series of Ptx–Sny/C catalysts with different atomic ratios are synthesized by a deposition process using formic acid as the reducing agent. Catalysts structure and chemical compositions are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and their relationship with catalytic behavior towards ethanol electro-oxidation was established. Geometric structural changes are producing by highest Sn content (Pt1–Sn1/C) promoted the interaction of Pt and Sn forming a solid solution of Pt–Sn alloy phase, whereas, the intermediate and lowest Sn content (Pt2–Sn1/C and Pt3–Sn1/C, respectively) promoted the electronic structure modifications of Pt by Sn addition without the formation of a solid solution. The amount of Sn added affects the physical and chemical characteristics of the bimetallic catalysts as well as reducing the amount of Pt in the catalyst composition and maintaining the electrocatalytic activities at the anode. However, the influence of the Sn oxidation state in Pt–Sn/C catalysts surfaces and the alloy formation between Pt and Sn as well as with the atomic ratio on their catalytic activity towards ethanol oxidation appears minimal. Similar methodologies applied for synthesis of Ptx–Sny/C catalysts with a small change show differences with the results obtained, thus highlighting the importance of the conditions of the preparation method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predicting accurate bond length alternations (BLAs) in long conjugated oligomers has been a significant challenge for electronic-structure methods for many decades, made particularly important by the close relationships between BLA and the rich optoelectronic properties of π-delocalized systems. Here, we test the accuracy of recently developed, and increasingly popular, double hybrid (DH) functionals, positioned at the top of Jacobs Ladder of DFT methods of increasing sophistication, computational cost, and accuracy, due to incorporation of MP2 correlation energy. Our test systems comprise oligomeric series of polyacetylene, polymethineimine, and polysilaacetylene up to six units long. MP2 calculations reveal a pronounced shift in BLAs between the 6-31G(d) basis set used in many studies of BLA to date and the larger cc-pVTZ basis set, but only modest shifts between cc-pVTZ and aug-cc-pVQZ results. We hence perform new reference CCSD(T)/cc-pVTZ calculations for all three series of oligomers against which we assess the performance of several families of DH functionals based on BLYP, PBE, and TPSS, along with lower-rung relatives including global- and range-separated hybrids. Our results show that DH functionals systematically improve the accuracy of BLAs relative to single hybrid functionals. xDH-PBE0 (N4 scaling using SOS-MP2) emerges as a DH functional rivaling the BLA accuracy of SCS-MP2 (N5 scaling), which was found to offer the best compromise between computational cost and accuracy the last time the BLA accuracy of DFT- and wave function-based methods was systematically investigated. Interestingly, xDH-PBE0 (XYG3), which differs to other DHs in that its MP2 term uses PBE0 (B3LYP) orbitals that are not self-consistent with the DH functional, is an outlier of trends of decreasing average BLA errors with increasing fractions of MP2 correlation and HF exchange.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oligophenylenes (polyphenylenes) are constituted by an array of conjugated benzenes where inter-ring electron delocalization tends to extend over the whole chain (linear conjugation) being intrinsically limited, among other factors, by terminal effects. Alternatively, cyclic conjugation is envisaged as the unlimited free-boundary versionofconjugation which will impact the structure of molecules in rather unknown ways. The cyclic version of oligophenylenes, cycloparaphenylenes ([n]CPPs with n the number of phenyl rings) were first synthesized in 2008 by Beztozzi and Jasti.1 Today the whole [n]CPP series from [5]CPP to [18]CPP has been prepared. [n]CPPs represent ideal models to investigate new insights of the electronic structure of molecules and cyclic conjugation when electrons or charges circulate in a closed circuit without boundaries. Radical cations and dications of [n]CPP from n=5 to n=12 have been prepared and studied by Raman spectroscopy.2 Small [n]CPP dications own their stability to the closed-shell electronic configuration imposed by cyclic conjugation. However, in large [n]CPP dications cyclic conjugation is minimal and these divalent species form open-shell biradicals. The Raman spectra reflect the effect of cyclic conjugation in competition with cyclic strain and biradicaloid aromatic stabilization. Cyclic conjugation provokes the existence of a turning point or V-shape behavior of the frequencies of the G bands as a function of n. In this communication we will show the vibrational spectroscopic fingerprint of this rare form of conjugation. [1] R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, “Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures”, J. Am. Chem. Soc. 130 (2008), 17646–17647. [2] M. P. Alvarez, P. M. Burrezo, M. Kertesz, T. Iwamoto, S. Yamago, J. Xia, R. Jasti, J. T. L. Navarrete, M. Taravillo, V. G. Baonza, J. Casado, “Properties of Sizeable [n]CycloParaPhenylenes As Molecular Models of Single-Wall Carbon Nanotubes By Raman Spectroscopy: Structural and Electron-Transfer Responses Under Mechanical Stress”, Angew. Chem. Int. Ed. 53, (2014), 7033−7037.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The heterogeneous phase reaction of Ru(η2-RL)(PPh3)2(CO)Cl, 1 with lithium acetylacetonate (Liacac) afforded the complexes of the type Ru(η1-RL)(PPh3)2(CO)(acac), 2 in excellent yield where η2-RL is C6H2O-2-CHNHC6H4R(p)-3-Me-5 and η1-RL is C6H2OH-2-CHNC6H4R(p)-3-Me-5 and R is H, Me, Cl. The chelation of acac is attended with the cleavage of Ru-O and Ru-Cl bonds and iminium-phenolato → imine-phenol prototropic shift. A sterically controlled change in rotational conformation is involved in the 12 conversion. The conversion is irreversible and the type 2 species are thermodynamically more stable than the carboxylate, nitrite and nitrate complexes of 1. The crystal structures of Ru(η1-MeL)(PPh3)2(CO)(acac), 2(Me) and Ru(η1-ClL)(PPh3)2(CO)(acac), 2(Cl) are reported. Spectral (UV-Vis, IR, 1H NMR) and electrochemical data of the complexes are also reported. The electronic structure and the absorption spectra of the complexes are scrutinized by the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) analyses. The complexes were also screened in vitro for their antiproliferative properties against the MCF-7 breast cancer cell lines by using the MTT assay. Flow cytometric analysis showed that the complexes arrested the cell cycle in the sub G0 phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A multi-billion dollar industry, electronic games have been experiencing strong and rapid growth in recent times. The world of games is not only exciting due to the magnificent growth of the industry however, but due to a host of other factors. This chapter explores electronic games, providing an analysis of the industry, key motivators for game play, the game medium and academic research concerning the effects of play. It also reviews the emerging relationship games share with sport, recognizing that they can replicate sports, facilitate sports participation and be played as a sport. These are complex relationships that have not yet been comprehensively studied. The current chapter serves to draw academic attention to the area and presents ideas for future research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Homo-and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15-triphenylporphyrin (TriPP) on both ends of the ethene-1,2-diyl bridge M 210 (M 2=H 2/Ni, Ni 2, Ni/Zn, H 4, H 2Zn, Zn 2) and 5,15-bis(3,5-di-tert-butylphenyl)porphyrinato-nickel(II) on one end and H 2, Ni, and ZnTriPP on the other (M 211), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni 2 bis(TriPP) complex Ni 210, single crystal X-ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of Ni II porphyrins, and the (E)-C 2H 2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H 410 and H 2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas-phase optimized geometry of Ni 210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synergizing graphene on silicon based nanostructures is pivotal in advancing nano-electronic device technology. A combination of molecular dynamics and density functional theory has been used to predict the electronic energy band structure and photo-emission spectrum for graphene-Si system with silicon as a substrate for graphene. The equilibrium geometry of the system after energy minimization is obtained from molecular dynamics simulations. For the stable geometry obtained, density functional theory calculations are employed to determine the energy band structure and dielectric constant of the system. Further the work function of the system which is a direct consequence of photoemission spectrum is calculated from the energy band structure using random phase approximations.