935 resultados para Electronic data processing - Distributed processing
Resumo:
In the last years, the main orientation of Formal Concept Analysis (FCA) has turned from mathematics towards computer science. This article provides a review of this new orientation and analyzes why and how FCA and computer science attracted each other. It discusses FCA as a knowledge representation formalism using five knowledge representation principles provided by Davis, Shrobe, and Szolovits [DSS93]. It then studies how and why mathematics-based researchers got attracted by computer science. We will argue for continuing this trend by integrating the two research areas FCA and Ontology Engineering. The second part of the article discusses three lines of research which witness the new orientation of Formal Concept Analysis: FCA as a conceptual clustering technique and its application for supporting the merging of ontologies; the efficient computation of association rules and the structuring of the results; and the visualization and management of conceptual hierarchies and ontologies including its application in an email management system.
Resumo:
In this paper we study two orthogonal extensions of the classical data mining problem of mining association rules, and show how they naturally interact. The first is the extension from a propositional representation to datalog, and the second is the condensed representation of frequent itemsets by means of Formal Concept Analysis (FCA). We combine the notion of frequent datalog queries with iceberg concept lattices (also called closed itemsets) of FCA and introduce two kinds of iceberg query lattices as condensed representations of frequent datalog queries. We demonstrate that iceberg query lattices provide a natural way to visualize relational association rules in a non-redundant way.
Resumo:
Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: Growing numbers of researchers work on improving the results of Web Mining by exploiting semantic structures in the Web, and they use Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The second aim of this paper is to use these concepts to circumscribe what Web space is, what it represents and how it can be represented and analyzed. This is used to sketch the role that Semantic Web Mining and the software agents and human agents involved in it can play in the evolution of Web space.
Resumo:
Ontologies have been established for knowledge sharing and are widely used as a means for conceptually structuring domains of interest. With the growing usage of ontologies, the problem of overlapping knowledge in a common domain becomes critical. In this short paper, we address two methods for merging ontologies based on Formal Concept Analysis: FCA-Merge and ONTEX. --- FCA-Merge is a method for merging ontologies following a bottom-up approach which offers a structural description of the merging process. The method is guided by application-specific instances of the given source ontologies. We apply techniques from natural language processing and formal concept analysis to derive a lattice of concepts as a structural result of FCA-Merge. The generated result is then explored and transformed into the merged ontology with human interaction. --- ONTEX is a method for systematically structuring the top-down level of ontologies. It is based on an interactive, top-down- knowledge acquisition process, which assures that the knowledge engineer considers all possible cases while avoiding redundant acquisition. The method is suited especially for creating/merging the top part(s) of the ontologies, where high accuracy is required, and for supporting the merging of two (or more) ontologies on that level.