962 resultados para Electromagnetic transient
Resumo:
The thesis investigates the nucleon structure probed by the electromagnetic interaction. One of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the form factors, which have been studied by means of elastic electron-proton scattering with ever increasing precision for several decades. In the timelike region, corresponding with the proton-antiproton annihilation into a electron-positron pair, the present experimental information is much less accurate. However, in the near future high-precision form factor measurements are planned. About 50 years after the first pioneering measurements of the electromagnetic form factors, polarization experiments stirred up the field since the results were found to be in striking contradiction to the findings of previous form factor investigations from unpolarized measurements. Triggered by the conflicting results, a whole new field studying the influence of two-photon exchange corrections to elastic electron-proton scattering emerged, which appeared as the most likely explanation of the discrepancy. The main part of this thesis deals with theoretical studies of two-photon exchange, which is investigated particularly with regard to form factor measurements in the spacelike as well as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region through a combined analysis using the results of unpolarized cross section measurements and polarization experiments is presented. Furthermore, predictions of the two-photon exchange effects on the e+p/e-p cross section ratio are given for several new experiments, which are currently ongoing. The two-photon exchange corrections are also investigated in the timelike region in the process pbar{p} -> e+ e- by means of two factorization approaches. These corrections are found to be smaller than those obtained for the spacelike scattering process. The influence of the two-photon exchange corrections on cross section measurements as well as asymmetries, which allow a direct access of the two-photon exchange contribution, is discussed. Furthermore, one of the factorization approaches is applied for investigating the two-boson exchange effects in parity-violating electron-proton scattering. In the last part of the underlying work, the process pbar{p} -> pi0 e+e- is analyzed with the aim of determining the form factors in the so-called unphysical, timelike region below the two-nucleon production threshold. For this purpose, a phenomenological model is used, which provides a good description of the available data of the real photoproduction process pbar{p} -> pi0 gamma.
Resumo:
We present a geospatial model to predict the radiofrequency electromagnetic field from fixed site transmitters for use in epidemiological exposure assessment. The proposed model extends an existing model toward the prediction of indoor exposure, that is, at the homes of potential study participants. The model is based on accurate operation parameters of all stationary transmitters of mobile communication base stations, and radio broadcast and television transmitters for an extended urban and suburban region in the Basel area (Switzerland). The model was evaluated by calculating Spearman rank correlations and weighted Cohen's kappa (kappa) statistics between the model predictions and measurements obtained at street level, in the homes of volunteers, and in front of the windows of these homes. The correlation coefficients of the numerical predictions with street level measurements were 0.64, with indoor measurements 0.66, and with window measurements 0.67. The kappa coefficients were 0.48 (95%-confidence interval: 0.35-0.61) for street level measurements, 0.44 (95%-CI: 0.32-0.57) for indoor measurements, and 0.53 (95%-CI: 0.42-0.65) for window measurements. Although the modeling of shielding effects by walls and roofs requires considerable simplifications of a complex environment, we found a comparable accuracy of the model for indoor and outdoor points.
Resumo:
Model based calibration has gained popularity in recent years as a method to optimize increasingly complex engine systems. However virtually all model based techniques are applied to steady state calibration. Transient calibration is by and large an emerging technology. An important piece of any transient calibration process is the ability to constrain the optimizer to treat the problem as a dynamic one and not as a quasi-static process. The optimized air-handling parameters corresponding to any instant of time must be achievable in a transient sense; this in turn depends on the trajectory of the same parameters over previous time instances. In this work dynamic constraint models have been proposed to translate commanded to actually achieved air-handling parameters. These models enable the optimization to be realistic in a transient sense. The air handling system has been treated as a linear second order system with PD control. Parameters for this second order system have been extracted from real transient data. The model has been shown to be the best choice relative to a list of appropriate candidates such as neural networks and first order models. The selected second order model was used in conjunction with transient emission models to predict emissions over the FTP cycle. It has been shown that emission predictions based on air-handing parameters predicted by the dynamic constraint model do not differ significantly from corresponding emissions based on measured air-handling parameters.
Resumo:
This is the first part of a study investigating a model-based transient calibration process for diesel engines. The motivation is to populate hundreds of parameters (which can be calibrated) in a methodical and optimum manner by using model-based optimization in conjunction with the manual process so that, relative to the manual process used by itself, a significant improvement in transient emissions and fuel consumption and a sizable reduction in calibration time and test cell requirements is achieved. Empirical transient modelling and optimization has been addressed in the second part of this work, while the required data for model training and generalization are the focus of the current work. Transient and steady-state data from a turbocharged multicylinder diesel engine have been examined from a model training perspective. A single-cylinder engine with external air-handling has been used to expand the steady-state data to encompass transient parameter space. Based on comparative model performance and differences in the non-parametric space, primarily driven by a high engine difference between exhaust and intake manifold pressures (ΔP) during transients, it has been recommended that transient emission models should be trained with transient training data. It has been shown that electronic control module (ECM) estimates of transient charge flow and the exhaust gas recirculation (EGR) fraction cannot be accurate at the high engine ΔP frequently encountered during transient operation, and that such estimates do not account for cylinder-to-cylinder variation. The effects of high engine ΔP must therefore be incorporated empirically by using transient data generated from a spectrum of transient calibrations. Specific recommendations on how to choose such calibrations, how many data to acquire, and how to specify transient segments for data acquisition have been made. Methods to process transient data to account for transport delays and sensor lags have been developed. The processed data have then been visualized using statistical means to understand transient emission formation. Two modes of transient opacity formation have been observed and described. The first mode is driven by high engine ΔP and low fresh air flowrates, while the second mode is driven by high engine ΔP and high EGR flowrates. The EGR fraction is inaccurately estimated at both modes, while EGR distribution has been shown to be present but unaccounted for by the ECM. The two modes and associated phenomena are essential to understanding why transient emission models are calibration dependent and furthermore how to choose training data that will result in good model generalization.
Resumo:
This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.
Resumo:
Decision trees have been proposed as a basis for modifying table based injection to reduce transient particulate spikes during the turbocharger lag period. It has been shown that decision trees can detect particulate spikes in real time. In well calibrated electronically controlled diesel engines these spikes are narrow and are encompassed by a wider NOx spike. Decision trees have been shown to pinpoint the exact location of measured opacity spikes in real time thus enabling targeted PM reduction with near zero NOx penalty. A calibrated dimensional model has been used to demonstrate the possible reduction of particulate matter with targeted injection pressure pulses. Post injection strategy optimized for near stoichiometric combustion has been shown to provide additional benefits. Empirical models have been used to calculate emission tradeoffs over the entire FTP cycle. An empirical model based transient calibration has been used to demonstrate that such targeted transient modifiers are more beneficial at lower engine-out NOx levels.
Resumo:
Long-term benefits of combination antiretroviral therapy (cART) initiation during primary HIV-1 infection are debated.
Resumo:
Mild unconjugated hyperbilirubinemia seems to be more common in patients with disorders from the schizophrenic spectrum than in other psychiatric patients or in the general population and has been linked to brain alterations. This spectrum however contains a number of diagnostic entities that might not share the same etiological and environmental factors.