981 resultados para Egypt, Remote Sensing, GIS, Red Sea
Resumo:
Little is known about the residual effects of crop residue (CR) and phosphorus (P) application on the fallow vegetation following repeated cultivation of pearl millet [Pennisetum glaucum (L.) R. Br.] in the Sahel. The objective of this study, therefore, was (i) to measure residual effects of CR, mulched at annual rates of 0, 500, 1000 and 2000 kg CR ha^-1, broadcast P at 0 and 13 kg P ha^-1 and P placement at 0, 1, 3, 5 and 7 kg P ha^-1 on the herbaceous dry matter (HDM) 2 years after the end of the experiment and (ii) to test a remote sensing method for the quantitative estimation of HDM. Compared with unmulched plots, a doubling of HDM was measured in plots that had received at least 500 kg CR ha^-1. Previous broadcast P application led to HDM increases of 14% compared with unfertilised control plots, whereas no residual effects of P placement were detected. Crop residue and P treatments caused significant shifts in flora composition. Digital analysis of colour photographs taken of the fallow vegetation and the bare soil revealed that the number of normalised green band pixels averaged per plot was highly correlated with HDM (r=0.86) and that red band pixels were related to differences in soil surface crusting. Given the traditional use of fallow vegetation as fodder, the results strongly suggest that for the integrated farming systems of the West African Sahel, residual effects of soil amendments on the fallow vegetation should be included in any comprehensive analysis of treatment effects on the agro-pastoral system.
Resumo:
At many locations in Myanmar, ongoing changes in land use have negative environmental impacts and threaten natural ecosystems at local, regional and national scales. In particular, the watershed area of Inle Lake in eastern Myanmar is strongly affected by the environmental effects of deforestation and soil erosion caused by agricultural intensification and expansion of agricultural land, which are exacerbated by the increasing population pressure and the growing number of tourists. This thesis, therefore, focuses on land use changes in traditional farming systems and their effects on socio-economic and biophysical factors to improve our understanding of sustainable natural resource management of this wetland ecosystem. The main objectives of this research were to: (1) assess the noticeable land transformations in space and time, (2) identify the typical farming systems as well as the divergent livelihood strategies, and finally, (3) estimate soil erosion risk in the different agro-ecological zones surrounding the Inle Lake watershed area. GIS and remote sensing techniques allowed to identify the dynamic land use and land cover changes (LUCC) during the past 40 years based on historical Corona images (1968) and Landsat images (1989, 2000 and 2009). In this study, 12 land cover classes were identified and a supervised classification was used for the Landsat datasets, whereas a visual interpretation approach was conducted for the Corona images. Within the past 40 years, the main landscape transformation processes were deforestation (- 49%), urbanization (+ 203%), agricultural expansion (+ 34%) with a notably increase of floating gardens (+ 390%), land abandonment (+ 167%), and marshlands losses in wetland area (- 83%) and water bodies (- 16%). The main driving forces of LUCC appeared to be high population growth, urbanization and settlements, a lack of sustainable land use and environmental management policies, wide-spread rural poverty, an open market economy and changes in market prices and access. To identify the diverse livelihood strategies in the Inle Lake watershed area and the diversity of income generating activities, household surveys were conducted (total: 301 households) using a stratified random sampling design in three different agro-ecological zones: floating gardens (FG), lowland cultivation (LL) and upland cultivation (UP). A cluster and discriminant analysis revealed that livelihood strategies and socio-economic situations of local communities differed significantly in the different zones. For all three zones, different livelihood strategies were identified which differed mainly in the amount of on-farm and off-farm income, and the level of income diversification. The gross margin for each household from agricultural production in the floating garden, lowland and upland cultivation was US$ 2108, 892 and 619 ha-1 respectively. Among the typical farming systems in these zones, tomato (Lycopersicon esculentum L.) plantation in the floating gardens yielded the highest net benefits, but caused negative environmental impacts given the overuse of inorganic fertilizers and pesticides. The Revised Universal Soil Loss Equation (RUSLE) and spatial analysis within GIS were applied to estimate soil erosion risk in the different agricultural zones and for the main cropping systems of the study region. The results revealed that the average soil losses in year 1989, 2000 and 2009 amounted to 20, 10 and 26 t ha-1, respectively and barren land along the steep slopes had the highest soil erosion risk with 85% of the total soil losses in the study area. Yearly fluctuations were mainly caused by changes in the amount of annual precipitation and the dynamics of LUCC such as deforestation and agriculture extension with inappropriate land use and unsustainable cropping systems. Among the typical cropping systems, upland rainfed rice (Oryza sativa L.) cultivation had the highest rate of soil erosion (20 t ha-1yr-1) followed by sebesten (Cordia dichotoma) and turmeric (Curcuma longa) plantation in the UP zone. This study indicated that the hotspot region of soil erosion risk were upland mountain areas, especially in the western part of the Inle lake. Soil conservation practices are thus urgently needed to control soil erosion and lake sedimentation and to conserve the wetland ecosystem. Most farmers have not yet implemented soil conservation measures to reduce soil erosion impacts such as land degradation, sedimentation and water pollution in Inle Lake, which is partly due to the low economic development and poverty in the region. Key challenges of agriculture in the hilly landscapes can be summarized as follows: fostering the sustainable land use of farming systems for the maintenance of ecosystem services and functions while improving the social and economic well-being of the population, integrated natural resources management policies and increasing the diversification of income opportunities to reduce pressure on forest and natural resources.
Resumo:
Los mapas de riesgo de inundaciones deberían mostrar las inundaciones en relación con los impactos potenciales que éstas pueden llegar a producir en personas, bienes y actividades. Por ello, es preciso añadir el concepto de vulnerabilidad al mero estudio del fenómeno físico. Así pues, los mapas de riesgo de daños por inundación son los verdaderos mapas de riesgo, ya que se elaboran, por una parte, a partir de cartografía que localiza y caracteriza el fenómeno físico de las inundaciones, y, por la otra, a partir de cartografía que localiza y caracteriza los elementos expuestos. El uso de las llamadas «nuevas tecnologías», como los SIG, la percepción remota, los sensores hidrológicos o Internet, representa un potencial de gran valor para el desarrollo de los mapas de riesgo de inundaciones, que es, hoy por hoy, un campo abierto a la investigación
Resumo:
In this paper we pledge that physically based equations should be combined with remote sensing techniques to enable a more theoretically rigorous estimation of area-average soil heat flux, G. A standard physical equation (i.e. the analytical or exact method) for the estimation of G, in combination with a simple, but theoretically derived, equation for soil thermal inertia (F), provides the basis for a more transparent and readily interpretable method for the estimation of G; without the requirement for in situ instrumentation. Moreover, such an approach ensures a more universally applicable method than those derived from purely empirical studies (employing vegetation indices and albedo, for example). Hence, a new equation for the estimation of Gamma(for homogeneous soils) is discussed in this paper which only requires knowledge of soil type, which is readily obtainable from extant soil databases and surveys, in combination with a coarse estimate of moisture status. This approach can be used to obtain area-averaged estimates of Gamma(and thus G, as explained in paper II) which is important for large-scale energy balance studies that employ aircraft or satellite data. Furthermore, this method also relaxes the instrumental demand for studies at the plot and field scale (no requirement for in situ soil temperature sensors, soil heat flux plates and/or thermal conductivity sensors). In addition, this equation can be incorporated in soil-vegetation-atmosphere-transfer models that use the force restore method to update surface temperatures (such as the well-known ISBA model), to replace the thermal inertia coefficient.
Resumo:
For vegetated surfaces, calculation of soil heat flux, G, with the Exact or Analytical method requires a harmonic analysis of below-canopy soil surface temperature, to obtain the shape of the diurnal course of G. When determining G with remote sensing methods, only composite (vegetation plus soil) radiometric brightness temperature is available. This paper presents a simple equation that relates the sum of the harmonic terms derived for the composite radiometric surface temperature to that of belowcanopy soil surface temperature. The thermal inertia, Gamma(,) for which a simple equation has been presented in a companion paper, paper I, is used to set the magnitude of G. To assess the success of the method proposed in this paper for the estimation of the diurnal shape of G, a comparison was made between 'remote' and in situ calculated values from described field sites. This indicated that the proposed method was suitable for the estimation of the shape of G for a variety of vegetation types and densities. The approach outlined in paper I, to obtain Gamma, was then combined with the estimated harmonic terms to predict estimates of G, which were compared to values predicted by empirical remote methods found in the literature. This indicated that the method proposed in the combination of papers I and II gave reliable estimates of G, which, in comparison to the other methods, resulted in more realistic predictions for vegetated surfaces. This set of equations can also be used for bare and sparsely vegetated soils, making it a universally applicable method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A method is presented which allows thermal inertia (the soil heat capacity times the square root of the soil thermal diffusivity, C(h)rootD(h)), to be estimated remotely from micrometeorological observations. The method uses the drop in surface temperature, T-s, between sunset and sunrise, and the average night-time net radiation during that period, for clear, still nights. A Fourier series analysis was applied to analyse the time series of T-s . The Fourier series constants, together with the remote estimate of thermal inertia, were used in an analytical expression to calculate diurnal estimates of the soil heat flux, G. These remote estimates of C(h)rootD(h) and G compared well with values derived from in situ sensors. The remote and in situ estimates of C(h)rootD(h) both correlated well with topsoil moisture content. This method potentially allows area-average estimates of thermal inertia and soil heat flux to be derived from remote sensing, e.g. METEOSAT Second Generation, where the area is determined by the sensor's height and viewing angle. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The study of the morphodynamics of tidal channel networks is important because of their role in tidal propagation and the evolution of salt-marshes and tidal flats. Channel dimensions range from tens of metres wide and metres deep near the low water mark to only 20-30cm wide and 20cm deep for the smallest channels on the marshes. The conventional method of measuring the networks is cumbersome, involving manual digitising of aerial photographs. This paper describes a semi-automatic knowledge-based network extraction method that is being implemented to work using airborne scanning laser altimetry (and later aerial photography). The channels exhibit a width variation of several orders of magnitude, making an approach based on multi-scale line detection difficult. The processing therefore uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels using a distance-with-destination transform. Breaks in the networks are repaired by extending channel ends in the direction of their ends to join with nearby channels, using domain knowledge that flow paths should proceed downhill and that any network fragment should be joined to a nearby fragment so as to connect eventually to the open sea.
Resumo:
Northern hemisphere snow water equivalent (SWE) distribution from remote sensing (SSM/I), the ERA40 reanalysis product and the HadCM3 general circulation model are compared. Large differences are seen in the February climatologies, particularly over Siberia. The SSM/I retrieval algorithm may be overestimating SWE in this region, while comparison with independent runoff estimates suggest that HadCM3 is underestimating SWE. Treatment of snow grain size and vegetation parameterizations are concerns with the remotely sensed data. For this reason, ERA40 is used as `truth' for the following experiments. Despite the climatology differences, HadCM3 is able to reproduce the distribution of ERA40 SWE anomalies when assimilating ERA40 anomaly fields of temperature, sea level pressure, atmospheric winds and ocean temperature and salinity. However when forecasts are released from these assimilated initial states, the SWE anomaly distribution diverges rapidly from that of ERA40. No predictability is seen from one season to another. Strong links between European SWE distribution and the North Atlantic Oscillation (NAO) are seen, but forecasts of this index by the assimilation scheme are poor. Longer term relationships between SWE and the NAO, and SWE and the El Ni\~no-Southern Oscillation (ENSO) are also investigated in a multi-century run of HadCM3. SWE is impacted by ENSO in the Himalayas and North America, while the NAO affects SWE in North America and Europe. While significant connections with the NAO index were only present in DJF (and to an extent SON), the link between ENSO and February SWE distribution was seen to exist from the previous JJA ENSO index onwards. This represents a long lead time for SWE prediction for hydrological applications such as flood and wildfire forecasting. Further work is required to develop reliable large scale observation-based SWE datasets with which to test these model-derived connections.
Resumo:
Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments. The high sensitivity of the spectrometer in the vicinity of the 2397 cm-1 band head region of CO2 has allowed the gas temperature to be calculated from the relative intensity of the observed rotational lines. The spatial distribution of the CO2 in a methane flame has been reconstructed tomographically using a matrix inversion technique. The spectrometer has been calibrated against a black body source at different temperatures and a self absorption correction has been applied to the data avoiding the need to measure the transmission directly. Reconstruction artifacts have been reduced by applying a smoothing routine to the inversion matrix.
Resumo:
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.
Resumo:
A series of model experiments with the coupled Max-Planck-Institute ECHAM5/OM climate model have been investigated and compared with microwave measurements from the Microwave Sounding Unit (MSU) and re-analysis data for the period 1979–2008. The evaluation is carried out by computing the Temperature in the Lower Troposphere (TLT) and Temperature in the Middle Troposphere (TMT) using the MSU weights from both University of Alabama (UAH) and Remote Sensing Systems (RSS) and restricting the study to primarily the tropical oceans. When forced by analysed sea surface temperature the model reproduces accurately the time-evolution of the mean outgoing tropospheric microwave radiation especially over tropical oceans but with a minor bias towards higher temperatures in the upper troposphere. The latest reanalyses data from the 25 year Japanese re-analysis (JRA25) and European Center for Medium Range Weather Forecasts Interim Reanalysis are in very close agreement with the time-evolution of the MSU data with a correlation of 0.98 and 0.96, respectively. The re-analysis trends are similar to the trends obtained from UAH but smaller than the trends from RSS. Comparison of TLT, computed from observations from UAH and RSS, with Sea Surface Temperature indicates that RSS has a warm bias after 1993. In order to identify the significance of the tropospheric linear temperature trends we determined the natural variability of 30-year trends from a 500 year control integration of the coupled ECHAM5 model. The model exhibits natural unforced variations of the 30 year tropospheric trend that vary within ±0.2 K/decade for the tropical oceans. This general result is supported by similar results from the Geophysical Fluid Dynamics Laboratory (GFDL) coupled climate model. Present MSU observations from UAH for the period 1979–2008 are well within this range but RSS is close to the upper positive limit of this variability. We have also compared the trend of the vertical lapse rate over the tropical oceans assuming that the difference between TLT and TMT is an approximate measure of the lapse rate. The TLT–TMT trend is larger in both the measurements and in the JRA25 than in the model runs by 0.04–0.06 K/decade. Furthermore, a calculation of all 30 year TLT–TMT trends of the unforced 500-year integration vary between ±0.03 K/decade suggesting that the models have a minor systematic warm bias in the upper troposphere.
Resumo:
Airborne lidar provides accurate height information of objects on the earth and has been recognized as a reliable and accurate surveying tool in many applications. In particular, lidar data offer vital and significant features for urban land-cover classification, which is an important task in urban land-use studies. In this article, we present an effective approach in which lidar data fused with its co-registered images (i.e. aerial colour images containing red, green and blue (RGB) bands and near-infrared (NIR) images) and other derived features are used effectively for accurate urban land-cover classification. The proposed approach begins with an initial classification performed by the Dempster–Shafer theory of evidence with a specifically designed basic probability assignment function. It outputs two results, i.e. the initial classification and pseudo-training samples, which are selected automatically according to the combined probability masses. Second, a support vector machine (SVM)-based probability estimator is adopted to compute the class conditional probability (CCP) for each pixel from the pseudo-training samples. Finally, a Markov random field (MRF) model is established to combine spatial contextual information into the classification. In this stage, the initial classification result and the CCP are exploited. An efficient belief propagation (EBP) algorithm is developed to search for the global minimum-energy solution for the maximum a posteriori (MAP)-MRF framework in which three techniques are developed to speed up the standard belief propagation (BP) algorithm. Lidar and its co-registered data acquired by Toposys Falcon II are used in performance tests. The experimental results prove that fusing the height data and optical images is particularly suited for urban land-cover classification. There is no training sample needed in the proposed approach, and the computational cost is relatively low. An average classification accuracy of 93.63% is achieved.
Resumo:
The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (~ 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.
Resumo:
Optimal estimation (OE) and probabilistic cloud screening were developed to provide lake surface water temperature (LSWT) estimates from the series of (advanced) along-track scanning radiometers (ATSRs). Variations in physical properties such as elevation, salinity, and atmospheric conditions are accounted for through the forward modelling of observed radiances. Therefore, the OE retrieval scheme developed is generic (i.e., applicable to all lakes). LSWTs were obtained for 258 of Earth's largest lakes from ATSR-2 and AATSR imagery from 1995 to 2009. Comparison to in situ observations from several lakes yields satellite in situ differences of −0.2 ± 0.7 K for daytime and −0.1 ± 0.5 K for nighttime observations (mean ± standard deviation). This compares with −0.05 ± 0.8 K for daytime and −0.1 ± 0.9 K for nighttime observations for previous methods based on operational sea surface temperature algorithms. The new approach also increases coverage (reducing misclassification of clear sky as cloud) and exhibits greater consistency between retrievals using different channel–view combinations. Empirical orthogonal function (EOF) techniques were applied to the LSWT retrievals (which contain gaps due to cloud cover) to reconstruct spatially and temporally complete time series of LSWT. The new LSWT observations and the EOF-based reconstructions offer benefits to numerical weather prediction, lake model validation, and improve our knowledge of the climatology of lakes globally. Both observations and reconstructions are publically available from http://hdl.handle.net/10283/88.
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud masks. Here, the technique is shown to be suitable for daytime applications over land and sea, using visible and near-infrared imagery, in addition to thermal infrared. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 89% and 73% for ocean and land, respectively using the Bayesian technique, compared to 90% and 70%, respectively for the threshold-based techniques associated with the validation dataset.