940 resultados para Ecosystem respiration
Reviving extinct Mediterranean forest communities may improve ecosystem potential in a warmer future
Resumo:
The Mediterranean Basin is the region of Europe most vulnerable to negative climate-change impacts, including forest decline, increased wildfire, and biodiversity loss. Because humans have affected Mediterranean ecosystems for millennia, it is unclear whether the region's native ecosystems were more resilient to climate change than current ecosystems, and whether they would provide sustainable management options if restored. We simulated vegetation with the LandClim model, using present-day climate as well as future climate-change scenarios, in three representative areas that encompass a broad range of Mediterranean conditions and vegetation types. Sedimentary pollen records that document now-extinct forests help to validate the simulations. Forests modeled under present climate closely resemble the extinct forests when human disturbance is limited; under future scenarios, characterized by increased temperatures and decreased precipitation, extinct forests are projected to re-emerge. When combined with modeling, paleoecological evidence reveals the potential of native vegetation to re-establish under current and future climate conditions, and provides a template for novel management strategies to maintain forest productivity and biodiversity in a warmer and drier future.
Resumo:
It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.
Resumo:
INTRODUCTION Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. METHODS Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1-100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. RESULTS In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). CONCLUSION LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner.
Resumo:
The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake. Such an assessment could form the basis for improving ES thinking, further embedding it into environmental decisions and management. The Young Ecosystem Services Specialists (YESS) completed a Strengths–Weaknesses–Opportunities–Threats (SWOT) analysis of ES through YESS member surveys. Strengths include the approach being interdisciplinary, and a useful communication tool. Weaknesses include an incomplete scientific basis, frameworks being inconsistently applied, and accounting for nature's intrinsic value. Opportunities include alignment with existing policies and established methodologies, and increasing environmental awareness. Threats include resistance to change, and difficulty with interdisciplinary collaboration. Consideration of SWOT themes suggested five strategic areas for developing and implementing ES. The ES concept could improve decision-making related to natural resource use, and interpretation of the complexities of human-nature interactions. It is contradictory – valued as a simple means of communicating the importance of conservation, whilst also considered an oversimplification characterised by ambiguous language. Nonetheless, given sufficient funding and political will, the ES framework could facilitate interdisciplinary research, ensuring decision-making that supports sustainable development.