956 resultados para Ecological responses
Resumo:
Present in the excrement of humans and animals, 17 beta-estradiol (E-2) has been detected in the aquatic environment in a range from several nanograms to several hundred nanograms per liter. In this study, the sensitivities of rare minnows during different life stages to E-2 at environmentally relevant (5, 25, and 100 ng l(-1)) and high (1000 ng l(-1)) concentrations were compared using vitellogenin (VTG) and gonad development as biomarkers under semistatic conditions. After 21 days of exposure, VTG concentrations in whole-body homogenates were analyzed; the results indicated that the lowest observed effective concentration for VTG induction was 25 ng l(-1) E-2 in the adult stage, but 100 ng l(-1) E-2 in the larval and juvenile stages. After exposure in the early life stage, the larval and juvenile fish were transferred to clean water until gonad maturation. No significant difference in VTG induction was found between the exposure and control groups in the adults. However, a markedly increased proportion of females and appearance of hermaphrodism were observed in the juvenile-stage group exposed to 25 ng l(-1) E-2. These results showed that VTG induction in the adult stage is more sensitive than in larval and juvenile stages following exposure to E-2. The juvenile stage may be the critical period of gonad development. Sex ratio could be a sensitive biomarker indicating exposure to xenoestrogens in early-life-stage subchronic exposure tests. The results of this study provide useful information for selecting sensitive biomarkers properly in aquatic toxicology testing.
Resumo:
The planktivorous filter-feeding silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) are the attractive candidates for bio-control of plankton communities to eliminate odorous populations of cyanobacteria. However, few studies focused on the health of such fishes in natural water body with vigorous toxic blooms. Blood parameters are useful and sensitive for diagnosis of diseases and monitoring of the physiological status of fish exposed to toxicants. To evaluate the impact of toxic cyanobacterial blooms on the planktivorous fish, 12 serum chemistry variables were investigated in silver carp and bighead carp for 9 months, in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. The results confirmed adverse effects of cyanobacterial blooms on two phytoplanktivorous fish, which mainly characterized with potential toxicogenomic effects and metabolism disorders in liver, and kidney dysfunction. In addition, cholestasis was intensively implied by distinct elevation of all four related biomarkers (ALP, GGT, DBIL, TBIL) in bighead carp. The combination of LDH, AST activities and DBIL, URIC contents for silver carp, and the combination of ALT. ALP activities and TBIL, DBIL. URIC concentrations for bighead carps were found to most strongly indicate toxic effects from cyanobacterial blooms in such fishes by a multivariate discriminant analysis. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study was conducted to investigate time-dependent changes in oxidative enzymes in liver of crucian carp after intraperitoneally injection with extracted microcystins 600 and 150 mu g kg(-1) body weight. The results showed that activities of antioxidant enzymes, including superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase generally exhibited a rapid increase in early phase (1-3 h post injection), but gradually decreased afterwards (12-48 h) compared with the control, with an evident time-dependent effect. These zigzag changes over time contributed a better understanding on oxidative stress caused by microcystins in fish.
Resumo:
A novel multi-cell device made of organic glass was designed to study morphological and physiological characteristics of Microcystis population trapped in simulated sediment conditions. Changes of colonial morphology and antioxidant activities of the population were observed and measured over the range of 31-day incubation. During the incubation, the antioxidant enzyme activities fluctuated significantly in sediment environments. The activities of catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (NIDA) reached the highest on the 11(th) day, 6(th) day and 6(th) day. respectively, and then dropped down remarkably in the following days. The ratios of Fv/Fm and the maximal electron transfer rate (ETRm) declined during the initial days (1 similar to 11(th) day), but rebounded on the 16(th) day, which were consistent with the variations of total protein. In the end of incubation. gas vacuoles were hard]), observed and the gelatinous sheath was partly disappeared in the population of Microcystis. Nevertheless, the remaining populations. upon transferred to culture medium, were able to grow though experiencing a longer lag phase of nine days. The results indicated that the sediment environments were able to cause negative effects on M. aeruginosa cells. The cells, however, responded to against the possible damage afterwards. It is thus proposed the acute responses in the population during the early stage of sedimentation could be of importance in aiding the long-term survivor of Microcystis and recruitment in lake sediments. The present study also demonstrated the utility of the device in simulating the sediment environments for further investigation.
Resumo:
Healthy crucian carp (Carassius auratus) were treated by intraperitoneal (i.p.) injection of crude cyanobacterial extracts at two doses, 50 and 200 mu g MC-LR equiv kg(-1) BW. High mortality (100%) was observed within 60 h post injection in the high-dose group. In the treated fish, activities of four plasma enzymes, alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), all showed substantial increases, with both dose and time-dependent effects. These increases of enzyme activity indicate severe impairment occurred in the liver of crucian carp over time. Plasma concentrations of energy-related biomolecules including glucose (GLU), cholesterol (CHO), triglyceride (TG), and total protein (TP) showed marked changes in the high-dose group, possibly a nutritional imbalance correlated with the liver injury caused by intraperitoneal exposure to crude cyanobacterial extracts.
Resumo:
We reported diet fluctuation in isotopic composition of surface seston from two connected lakes in China, oligotrophic Lake Fuxian and eutrophic Lake Xingyun. The decrease in nighttime and the increase in daytime of isotope signatures of seston might be attributed to the light-dependent balance between the photosynthesis and the respiration of phytoplankton and to the changes in the species composition and the relative abundance of phytoplankton functional groups at the water's surface in diel growth. The relatively high isotopic signatures and the large-extent diel fluctuation of phytoplankton in the eutrophic lake could be due to utilization of heavy-isotope-enriched inorganic sources and the high primary productivity. Extent of diel fluctuation in delta C-13 and delta N-15 of phytoplankton were relatively small compared with the isotopic enrichment per trophic transfer and thus might have negligible effect on the source identification and the trophic evaluation of consumers.
Resumo:
The relationship of macrozoobenthos communities with some environmental variables, and their response to the ongoing restoration measures were studied in a small hypertrophic urban lake near the Yangzte River, China. Twenty taxa including 9 oligochaetes, 7 insects, 2 mollusks and two other animals were found during March 2005 to May 2006. The reappearance of some indigenous macrozoobenthos species showed that the ecological engineering remediation carried out was helpful for the recovery of the macrozoobenthos communities. Through canonical correspondence analysis (CCA), it was detected that temperature (T), conductivity (COND), Secchi depth/deep (SD/Deep), TN, total suspended solids (SS) and chemical oxygen demand (CODcr) were significant environmental factors that influenced the pattern of macrozoobenthos. Limnodrilus hoffmeisteri, Tanypus sp. and Alocinma longicornis could be used as potential bio-indicators in monitoring the development of ecological restoration.
Resumo:
Photosynthetic activity during rehydration at four temperatures (5, 15, 25, 35 degrees C) was studied in a terrestrial, highly drought-tolerant cyanobacterium, Nostoc flagelliforme. At all the temperatures, the optimum quantum yield F-v/F-m increased rapidly within I It and then increased slowly during the process of rehydration. The increase in F-v/F-m at 25 and 35 degrees C was larger than that at 5 and 15 degrees C. In addition, the changes of initial intensity of fluorescence (F-0) and variable fluorescence (F-v) were more significant at 25 and 35 degrees C than those at 5 and 15 degrees C. Chlorophyll a content increased with the increase of temperature during the course of rehydration, with this being more pronounced at 25 and 35 degrees C. The photosynthetic rates at 25 and 35 degrees C were higher than those at 5 and 15 degrees C. Induction of chlorophyll fluorescence with sustained rewetting at 5 and 15 degrees C had two phases of transformation, whereas at 25 and 35 degrees C it had a third peak kinetic phase and showed typical chlorophyll fluorescence steps on rewetting for 24 h, representing a normal physiological state. A comparison of the chlorophyll fluorescence parameters, chlorophyll a content, and the chlorophyll fluorescence induction led to the conclusion that N. flagelliforme had a more rapid and complete recovery at 25 and 35 degrees C than that at 5 and 15 degrees C, although it could recover its photosynthetic activity at any of the four temperatures. (c) 2007 Published by Elsevier Ltd.
Resumo:
The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I-k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus.
Resumo:
Genetically improved transgenic fish possess many beneficial economic traits; however, the commercial aquaculture of transgenic fish has not been performed till date. One of the major reasons for this is the possible ecological risk associated with the escape or release of the transgenic fish. Using a growth hormone transgenic fish with rapid growth characteristics as a subject, this paper analyzes the following: the essence of the potential ecological risks posed by transgenic fish; ecological risk in the current situation due to transgenic fish via one-factor phenotypic and fitness analysis, and mathematical model deduction. Then, it expounds new ideas and the latest findings using an artificially simulated ecosystem for the evaluation of the ecological risks posed by transgenic fish. Further, the study comments on the strategies and principles of controlling these ecological risks by using a triplold approach. Based on these results, we propose that ecological risk evaluation and prevention strategies are indispensable important components and should be accompanied with breeding research in order to provide enlightments for transgenic fish breeding, evaluation of the ecological risks posed by transgenic fish, and development of containment strategies against the risks.
Resumo:
Scytonema javanicum (Kutz.) Born et Flah (cyanobacterium) is one of the species distributed widely in the crust of desert soils regularly subjected to severe water stress. To investigate the response of the species to salt stress, many physiological and biochemical parameters, including growth rate, ratio of variable fluorescence to maximum fluorescence (Fv/Fm), reactive oxidative species (ROS), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD), were determined in culture. The results showed that 50 mM NaCl inhibited growth and Fv/Fm in the medium BG-110, and that the inhibition was maximum after 1-2 days' exposure to salt stress; 50 mM NaCl also increased the contents of ROS and MDA in treated cells, which suggests that salt stress may lead to oxidative damage and lipid peroxidation in the alga. Further, changes in the antioxidative enzymes SOD and CAT in the treated alga were consistent with changes in ROS and MDA at certain extent. These observations suggest that oxidative stress resulting from salt stress in S. javanicum could result in the production of antioxidative enzymes to counteract the oxidative damage, and the enzymes may contribute to the ability of S. javanicum to survive the adverse desert environment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms were studied in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. We sampled four fishes: the phytoplanktivorous Hypophthalmichthys molitrix and Aristichthys nobilis, the omnivorous Carassius auratus, and the carnivorous Culter ilishaeformis. Alterations of the antioxidant (GSH) and the major antioxidant enzymes (CAT, SOD, GPx, GST) in livers were monitored monthly, and the ultrastructures of livers were compared between the bloom and post-bloom periods. During the cyanobacterial blooms, the phytoplanktivorous fishes displayed only slight ultrastructural changes in liver, while the carnivorous fish presented the most serious injury as swollen endomembrane system and morphologically altered nuclei in hepatocytes. Biochemically, the phytoplanktivorous fishes possessed higher basal GSH concentrations and better correlations between the major antioxidant enzymes in liver, which might be responsible for their powerful resistance to MCs. This article provided physiological and toxicological evidences for the possible succession of fish communities following occurrence of toxic cyanobacterial blooms and also for the applicability of using phytoplanktivorous fish to counteract toxic cyanobacterial blooms in natural waters. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular ( 4 strains) and colonial ( 4 strains) Microcystis strains to phosphorus ( P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l - 1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P- starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P- limited conditions, the oxygen evolution rate, Fv/ Fm, and ETRmax were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions.
Resumo:
Dark respiration (nonphotorespiratory mitochondrial CO2 release) in the light (R-L) of the intertidal macroalga Ulva lactuca (Chorophyta) during emersion was investigated with respect to its response to variations in temperature and desiccation. R-L was estimated by CO2 gas-exchange analysis using the Kok effect method, whereas dark respiration in darkness (R-D) was determined from CO2 release at zero light. Rates of R, were significantly and consistently lower than those of R-D in emersed U. lactuca across all the temperature and desiccation levels measured. This demonstrated that dark respiration was partially depressed in the light, with the percentage inhibition ranging from 32 to 62%. Desiccation exerted a negative effect on R-L and R-D at a high temperature, 33 degrees C, whereas it had much less effect on respiration at low and moderate temperatures, 23 and 28 degrees C. In general, R-L and R-D increased with increasing temperature in U. lactuca during all stages of emersion but responded less positively to temperature change with increasing desiccation. Additionally, the Q(10) value (i.e. the proportional increase of respiration for each 10 degrees C rise in temperature) for R-L calculated over the temperature range of 23 to 33 degrees C was significantly higher than that for R-D in U. lactuca during the initial stages of emersion. Respiratory carbon loss as a percentage of gross photosynthetic carbon gain increased with increasing temperature and/or desiccation but was significantly reduced when estimated using R-L rather than R-D. It is suggested that measurements of R-L and how it changes in a variable environment are as important as estimates of R-D and photosynthesis in determining simultaneous balance between photosynthetic carbon uptake and respiratory carbon loss and in modeling the net daily carbon gain for an intertidal macroalga.
Resumo:
Alterations in hematological indices such as decreases in blood cell counts (RBC), hematocrit (Ht) and hemoglobin (Hb) concentrations are key symptoms of anemia. However, few experiments were conducted to examine changes in hematological indices of fish exposed to microcystins that are believed to be fatal to circulatory systems of vertebrates. An acute toxicological experiment was designed to study hematological changes of crucian carp injected intraperitoneally (i.p.) with extracted microcystins at two doses, 50 and 200 mu g MC-LReqkg(-1) body weight. After being i.p. injected with microcystins, the fish exhibited behavioral abnormity. There were significant decreases in RBC in the high-dose group, and in Ht and Hb concentrations in both dose groups, while erythrocte sedimentation rate (ESR) significantly increased, indicating the appearance of normocytic anemia. There were no prominent changes in the three red cell indices, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH,), and mean corpuscular hemoglobin concentration (MCHC). Increases in blood urea nitrogen (BUN) and creatinine (CR) in both dose groups suggest the occurrence of kidney impairment. Alteration in blood indices was reversible at the low dose group. Conclusively, anemia induced by kidney impairment was a key factor to cause abnormity of swimming behaviors and high mortality of crucian carp. (c) 2007 Elsevier Ltd. All rights reserved.