968 resultados para Ecological niche modelling
Resumo:
Background: Bone health is a concern when treating early stage breast cancer patients with adjuvant aromatase inhibitors. Early detection of patients (pts) at risk of osteoporosis and fractures may be helpful for starting preventive therapies and selecting the most appropriate endocrine therapy schedule. We present statistical models describing the evolution of lumbar and hip bone mineral density (BMD) in pts treated with tamoxifen (T), letrozole (L) and sequences of T and L. Methods: Available dual-energy x-ray absorptiometry exams (DXA) of pts treated in trial BIG 1-98 were retrospectively collected from Swiss centers. Treatment arms: A) T for 5 years, B) L for 5 years, C) 2 years of T followed by 3 years of L and, D) 2 years of L followed by 3 years of T. Pts without DXA were used as a control for detecting selection biases. Patients randomized to arm A were subsequently allowed an unplanned switch from T to L. Allowing for variations between DXA machines and centres, two repeated measures models, using a covariance structure that allow for different times between DXA, were used to estimate changes in hip and lumbar BMD (g/cm2) from trial randomization. Prospectively defined covariates, considered as fixed effects in the multivariable models in an intention to treat analysis, at the time of trial randomization were: age, height, weight, hysterectomy, race, known osteoporosis, tobacco use, prior bone fracture, prior hormone replacement therapy (HRT), bisphosphonate use and previous neo-/adjuvant chemotherapy (ChT). Similarly, the T-scores for lumbar and hip BMD measurements were modeled using a per-protocol approach (allowing for treatment switch in arm A), specifically studying the effect of each therapy upon T-score percentage. Results: A total of 247 out of 546 pts had between 1 and 5 DXA; a total of 576 DXA were collected. Number of DXA measurements per arm were; arm A 133, B 137, C 141 and D 135. The median follow-up time was 5.8 years. Significant factors positively correlated with lumbar and hip BMD in the multivariate analysis were weight, previous HRT use, neo-/adjuvant ChT, hysterectomy and height. Significant negatively correlated factors in the models were osteoporosis, treatment arm (B/C/D vs. A), time since endocrine therapy start, age and smoking (current vs. never).Modeling the T-score percentage, differences from T to L were -4.199% (p = 0.036) and -4.907% (p = 0.025) for the hip and lumbar measurements respectively, before any treatment switch occurred. Conclusions: Our statistical models describe the lumbar and hip BMD evolution for pts treated with L and/or T. The results of both localisations confirm that, contrary to expectation, the sequential schedules do not seem less detrimental for the BMD than L monotherapy. The estimated difference in BMD T-score percent is at least 4% from T to L.
Resumo:
Abstract
Resumo:
Despite the increase of animal and plant introductions worldwide and the strong augmentation of the reptile trade, few invasive snake populations have been studied. Dice snakes (Natrix tessellata) were introduced to the shores of Lake Geneva (Switzerland) in the early 1920s, and are now well established. This region of introduction was previously inhabited by Viperine snakes (N. maura). Ever since these two species have been under monitoring (which began in 1996) the Viperine snake population has shown drastic decline. We examine here the possibility of trophic competition by analysing diet composition, prey size and trophic niche overlap. Spatial distribution is also assessed in order to address the question of spatial competitive exclusion. We found very similar diets, and thus a high trophic niche overlap, indicating no partitioning of the trophic resource. No arguments in favour of spatial competitive exclusion were found. Our study suggests that trophic competition may occur between the two natricines and that it may give an explanation for the drastic decline of the Viperine snake in this area. Other pathways potentially playing a role in the exclusion of the Viperine snake are discussed.
Resumo:
Aim To evaluate the effects of using distinct alternative sets of climatic predictor variables on the performance, spatial predictions and future projections of species distribution models (SDMs) for rare plants in an arid environment. . Location Atacama and Peruvian Deserts, South America (18º30'S - 31º30'S, 0 - 3 000 m) Methods We modelled the present and future potential distributions of 13 species of Heliotropium sect. Cochranea, a plant group with a centre of diversity in the Atacama Desert. We developed and applied a sequential procedure, starting from climate monthly variables, to derive six alternative sets of climatic predictor variables. We used them to fit models with eight modelling techniques within an ensemble forecasting framework, and derived climate change projections for each of them. We evaluated the effects of using these alternative sets of predictor variables on performance, spatial predictions and projections of SDMs using Generalised Linear Mixed Models (GLMM). Results The use of distinct sets of climatic predictor variables did not have a significant effect on overall metrics of model performance, but had significant effects on present and future spatial predictions. Main conclusion Using different sets of climatic predictors can yield the same model fits but different spatial predictions of current and future species distributions. This represents a new form of uncertainty in model-based estimates of extinction risk that may need to be better acknowledged and quantified in future SDM studies.
Resumo:
Aim Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location Europe. Methods We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.
Resumo:
Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.
Resumo:
Background: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer.
Resumo:
The international allocation of natural resources is determined, not by any ethical or ecological criteria, but by the dominance of market mechanisms. From a core-periphery perspective, this allocation may even be driven by historically determined structural patterns, with a core group of countries whose consumption appropriates most available natural resources, and another group, having low natural resource consumption, which plays a peripheral role. This article consists of an empirical distributional analysis of natural resource consumption (as measured by Ecological Footprints) whose purpose is to assess the extent to which the distribution of consumption responds to polarization (as opposed to mere inequality). To assess this, we estimate and decompose different polarization indices for a balanced sample of 119 countries over the period 1961 to 2007. Our results points toward a polarized distribution which is consistent with a core-periphery framework.
Resumo:
Knowledge about spatial biodiversity patterns is a basic criterion for reserve network design. Although herbarium collections hold large quantities of information, the data are often scattered and cannot supply complete spatial coverage. Alternatively, herbarium data can be used to fit species distribution models and their predictions can be used to provide complete spatial coverage and derive species richness maps. Here, we build on previous effort to propose an improved compositionalist framework for using species distribution models to better inform conservation management. We illustrate the approach with models fitted with six different methods and combined using an ensemble approach for 408 plant species in a tropical and megadiverse country (Ecuador). As a complementary view to the traditional richness hotspots methodology, consisting of a simple stacking of species distribution maps, the compositionalist modelling approach used here combines separate predictions for different pools of species to identify areas of alternative suitability for conservation. Our results show that the compositionalist approach better captures the established protected areas than the traditional richness hotspots strategies and allows the identification of areas in Ecuador that would optimally complement the current protection network. Further studies should aim at refining the approach with more groups and additional species information.
Resumo:
The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed.