998 resultados para EXTENSOR INDICIS MUSCLE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) has been implicated as an important signaling molecule in the insulin-independent, contraction-mediated glucose uptake pathway and may represent a novel strategy for blood glucose control in patients with type 2 diabetes (T2DM). The current study sought to determine whether the NO donor, sodium nitroprusside (SNP) increases glucose uptake in primary human skeletal muscle cells (HSkMC) derived from both healthy individuals and patients with T2DM. Vastus lateralis muscle cell cultures were derived from seven males with T2DM (aged 54 ± 2 years, BMI 31.7 ± 1.2 kg/m2, fasting plasma glucose 9.52 ± 0.80 mmol/L) and eight healthy individuals (aged 46 ± 2 years, BMI 27.1 ± 1.5 kg/m2, fasting plasma glucose 4.69 ± 0.12 mmol/L). Cultures were treated with both therapeutic (0.2 and 2 μM) and supratherapeutic (3, 10 and 30 mM) concentrations of SNP. An additional NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) was also examined at a concentration of 50 μM. Glucose uptake was significantly increased following both 30 and 60 min incubations with the supratherapeutic SNP treatments (P = 0.03) but not the therapeutic SNP doses (P = 0.60) or SNAP (P = 0.54). There was no difference in the response between the healthy and T2DM cell lines with any treatment or dose. The current study demonstrates that glucose uptake is elevated by supratherapeutic, but not therapeutic doses of SNP in human primary skeletal muscle cells derived from both healthy volunteers and patients with T2D. These data confirm that nitric oxide donors have potential therapeutic utility to increase glucose uptake in humans, but that SNP only achieves this in supratherapeutic doses. Further study to delineate mechanisms and the therapeutic window is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between muscle strength and bone mineral density illustrates the positive effect of mechanical loading on bone. But local and systemic factors may affect both muscle and bone tissues. This study investigated the effects of long-term tennis playing on the relationship between lean tissue mass and bone mineral content in the forearms, taking the body dimensions into account. Fifty-two tennis players (age 24.2 +/- 5.8 yrs, 16.2 +/- 6.1 yrs of practice) were recruited. Lean tissue mass (LTM), bone area, bone mineral content (BMC), and bone mineral density were measured at the forearms from a DXA whole-body scan. Grip strength was assessed with a dynamometer. A marked side-to-side difference (p < 0.0001) was found in favor of the dominant forearm in all parameters. Bone area and BMC correlated with grip strength on both sides (r = 0.81 - 0.84, p < 0.0001). The correlations were still significant after adjusting for whole-body BMC body height, or forearm length. This result reinforced the putative role of the muscles in the mechanical loading on bones. In addition, forearm BMC adjusted to LTM or grip strength was higher on the dominant side, suggesting that tennis playing exerts a direct effect on bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The benefit of impact-loading activity for bone strength depends on whether the additional bone mineral content (BMC) accrued at loaded sites is due to an increased bone size, volumetric bone mineral density (vBMD) or both. Using magnetic resonance imaging (MRI) and dual energy X-ray absorptiometry (DXA), the aim of this study was to characterize the geometric changes of the dominant radius in response to long-term tennis playing and to assess the influence of muscle forces on bone tissue by investigating the muscle–bone relationship. Twenty tennis players (10 men and 10 women, mean age: 23.1 ± 4.7 years, with 14.3 ± 3.4 years of playing) were recruited. The total bone volume, cortical volume, sub-cortical volume and muscle volume were measured at both distal radii by MRI. BMC was assessed by DXA and was divided by the total bone volume to derive vBMD. Grip strength was evaluated with a dynamometer. Significant side-to-side differences (P < 0.0001) were found in muscle volume (+9.7%), grip strength (+13.3%), BMC (+13.5%), total bone volume (+10.3%) and sub-cortical volume (+20.6%), but not in cortical volume (+2.6%, ns). The asymmetry in total bone volume explained 75% of the variance in BMC asymmetry (P < 0.0001). vBMD was slightly higher on the dominant side (+3.3%, P < 0.05). Grip strength and muscle volume correlated with all bone variables (except vBMD) on both sides (r = 0.48–0.86, P < 0.05–0.0001) but the asymmetries in muscle parameters did not correlate with those in bone parameters. After adjustment for muscle volume or grip strength, BMC was still greater on the dominant side. This study showed that the greater BMC induced by long-term tennis playing at the dominant radius was associated to a marked increase in bone size and a slight improvement in volumetric BMD, thereby improving bone strength. In addition to the muscle contractions, other mechanical stimuli seemed to exert a direct effect on bone tissue, contributing to the specific bone response to tennis playing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Neck injuries are common in high performance combat pilots and have been attributed to high gravitational forces and the non-neutral head postures adopted during aerial combat maneuvers. There is still little known about the pathomechanics of these injuries.

Methods: Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels (1, 3, and 5) and four head postures (Neutral, Turn, Extension, and Check-6). Surface electromyography from neck and shoulder muscles was recorded in flight. Three-dimensional measures of head postures adopted in flight were estimated postflight with respect to end-range of the cervical spine using an electromagnetic tracking device.

Results: Mean muscle activation increased significantly with both increasing +Gz and non-neutral head postures. Check-6 at +5 Gz (mean activation of all muscles = 51% MVIC) elicited significantly greater muscle activation in most muscles when compared with Neutral, Extension, and Turn head postures. High levels of muscle co-contraction were evident in high acceleration and non-neutral head postures. Head kinematics showed Check-6 was closest to end-range in any movement plane (86% ROM in rotation) and produced the greatest magnitude of rotation in other planes. Turn and Extension showed a large magnitude of rotation with reference to end-range in the primary plane of motion but displayed smaller rotations in other planes.

Discussion:
High levels of neck muscle activation and co-contraction due to high +Gz and head postures close to end range were evident in this study, suggesting the major influence of these factors on the pathomechanics of neck injuries in high performance combat pilots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Performing specific neck strengthening exercises has been proposed to decrease the incidence of neck injury and pain in high performance combat pilots. However, there is little known about these exercises in comparison to the demands on the neck musculature in flight.

Methods: Eight male non-pilots performed specific neck exercises using two different modalities (elastic band and resistance machine) at six different intensities in flexion, extension, and lateral bending. Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels and four head positions. Surface electromyography (EMG) from selected neck and shoulder muscles was recorded in both activities.

Results: Muscle activation levels recorded during the three elastic band exercises were similar to in-flight EMG collected at +1 Gz (15% MVIC). EMG levels elicited during the 50% resistance machine exercises were between the +3 Gz (9-40% MVIC) and +5 Gz (16-53% MVIC) ranges of muscle activations in most muscles. EMG recorded during 70% and 90% resistance machine exercises were generally higher than in-flight EMG at +5 Gz.

Discussion: Elastic band exercises could possibly be useful to pilots who fly low +Gz missions while 50% resistance machine mimicked neck loads experienced by combat pilots flying high +Gz ACM. The 70% and 90% resistance machine intensities are known to optimize maximal strength but should be administered with care because of the unknown spinal loads and diminished muscle force generating capacity after exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to examine the relationship between skeletal muscle monocarboxylate transporters 1 and 4 (MCT1 and MCT4) expression, skeletal muscle oxidative capacity and endurance performance in trained cyclists. Ten well-trained cyclists (mean ± SD; age 24.4 ± 2.8 years, body mass 73.2 ± 8.3 kg, VO2max 58 ± 7 ml kg−1 min−1) completed three endurance performance tasks [incremental exercise test to exhaustion, 2 and 10 min time trial (TT)]. In addition, a muscle biopsy sample from the vastus lateralis muscle was analysed for MCT1 and MCT4 expression levels together with the activity of citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD). There was a tendency for VO2max and peak power output obtained in the incremental exercise test to be correlated with MCT1 (r = −0.71 to −0.74; P < 0.06), but not MCT4. The average power output (P average) in the 2 min TT was significantly correlated with MCT4 (r = −0.74; P < 0.05) and HAD (r = −0.92; P < 0.01). The P average in the 10 min TT was only correlated with CS activity (r = 0.68; P < 0.05). These results indicate the relationship between MCT1 and MCT4 as well as cycle TT performance may be influenced by the length and intensity of the task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Studies have shown that, in isolated skeletal muscles, maximum isometric force production (Po) is dependent on muscle redox state. Endurance training increases the antioxidant capacity of skeletal muscles, a factor that could impact on the force-producing capacity following exogenous exposure to an oxidant. We tested the hypothesis that 12 weeks treadmill training would increase anti-oxidant capacity in rat skeletal muscles and alter their response to exogenous oxidant exposure.

2. At the conclusion of the 12 week endurance-training programme, soleus (slow-twitch) muscles from trained rats had greater citrate synthase (CS) and catalase (CAT) activity compared with soleus muscles from untrained rats (P < 0.05).
In contrast, CAT activity of extensor digitorum longus (EDL; fast-twitch) muscles from trained rats was not different to EDL muscles of untrained rats. The CS activity was lower in EDL muscles from trained compared with untrained rats (P < 0.05).

3. Equilibration with exogenous hydrogen peroxide (H2O2, 5 mmol/L) increased the Po of soleus muscles from untrained rats for the duration of treatment (30 min), whereas the Po of EDL muscles was affected biphasically, with a small increase initially (after 5 min), followed by a more marked decrease in Po (after 30 min). The H2O2-induced increase in Po of soleus muscles from trained rats was less than that in untrained rats (P < 0.05), but no differences were observed in the Po of EDL muscles following training.

4. The results indicate that 12 weeks endurance running training conferred adaptations in soleus but not EDL muscles. These adaptations were associated with an attenuation of the oxidant-induced increase in Po of soleus muscles from trained compared with untrained rats. We conclude that endurance training-adapted soleus muscles have a slightly altered redox - force relationship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Findings recently have shown coupling protein-3 (UCP3) content to be decreased in the skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Uncoupling protein-3 mRNA exists as two isoforms: long (UCP3L) and short (UCP3S). The UCP3 protein is expressed the least in oxidative and the most in glycolytic muscle fibers. Levels of UCP3 have been associated positively with intramyocellular triglyceride (IMTG) contents in conditions of altered fatty acid metabolism. As a source for muscle free fatty acid metabolism, IMTG is decreased in COPD. The current study completely characterized all the parameters of UCP3 expression (ie, UCP3L and UCP3S mRNA expression in whole muscle samples) and UCP3 protein content as well as IMTG content in the different fiber types in patients with COPD and healthy control subjects.

Methods: Using real-time polymerase chain reaction, UCP3 gene expression was quantified. Skeletal muscle fiber type and UCP3 protein and IMTG content were measured using immunofluorescence and Oil red oil staining, respectively.

Results: The findings showed that UCP3L mRNA expression was 44% lower (P < .005) in the patients with COPD than in the control subjects, whereas the UCP3S mRNA content was similar in the two groups. As compared with control subjects, UCP3 protein content was decreased by 89% and 83% and the IMTG content by 64% and 54%, respectively, in types I and IIa fibers (P < .0167) of patients with COPD, whereas they were unchanged in IIx fibers.

Conclusions: The reduced UCP3 and IMTG content in the more oxidative fibers may be linked to the altered muscle fatty acid metabolism associated with COPD. Further studies are required to determine the exact role and clinical relevance of the reduced UCP3 content in patients with COPD.