978 resultados para EXCHANGE MEMBRANE
Resumo:
Zeolite membranes with high permeance and separation factors are highly desirable for practical applications. Although, in the past, very good separation factors have been obtained, it has proved difficult to achieve a high permeance. Ken a comparative study of microwave versus conventional heating in the hydrothermal synthesis of NaA zeolite membranes is made. It is demonstrated that membranes prepared by microwave heating have not only a higher permeance but also a considerably shorter synthesis time. These observations are rationalized by examining the mechanism of membrane formation.
Resumo:
Tangential flow affinity membrane cartridge (TFAMC) fs a new model of immunoadsorption therapy for hemoperfusion. Recombinant Protein A was immobilized on the membrane cartridge through Schiff base formation for extracorporeal IgG and immune complex removal from blood. Flow characteristics, immunoadsorption capacity and biocompatibility of protein A TFAMC were studied. The results showed that the pressure drop increased with the increasing flow rate of water, plasma and blood, demonstrating reliable strength of membrane at high now rare. The adsorption capacities of protein A TFAMC for IgG from human plasma and blood were measured. The cartridge with 139 mg protein A immobilized on the matrix (6 mg protein A/g dry matrix) adsorbed 553 mg IgG (23.8 mg IgG/g dry matrix) from human plasma and 499.4 mg IgG (21.5 mg IgG/g dry matrix) from human blood, respectively. The circulation time had a major influence on IgG adsorption capacity, but the flow rate had little influence. Experiments in vitro and in vivo confirmed that protein A TFAMC mainly adsorbed Ige and Little of other plasma proteins, and that blood cell damage was negligible. The extracorporeal circulation system is safe and reliable. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
An oxygen permeable membrane based on Ba0.5Sr0.5Co0.8-Fe0.2O3-delta is used to supply lattice oxide continuously for oxidative dehydrogenation of ethane to ethylene with selectivity as high as 90% at 650degreesC.
Resumo:
Zirconium-doped perovskite-type membrane materials of BaCo0.4Fe0.6-xZrxO3-delta (x = 0-0.4) with mixed oxygen ion and electron conductivity were synthesized through a method of combining citric and EDTA acid complexes. The results of X-ray diffraction (XRD), oxygen temperature-programmed desorption (O-2-TPD) and hydrogen temperature-programmed reduction (H-2-TPR) showed that the incorporation of proper amount of zirconium into BaCo0.4Fe0.6O3-delta could stabilize the ideal and cubic structure of perovskite. Studies on the oxygen permeability of the as-synthesized membrane disks under air/He gradient indicated that the content of zirconium in these materials had great effects on oxygen permeation flux, activation energy for oxygen permeation and operation stability. The high oxygen permeation flux of 0.90 ml cm(-2) min(-1) at 950degreesC, the single activation energy for oxygen permeation in the range of 600-950 degreesC and the long-term operation stability at a relatively lower operational temperature of 800 degreesC under air/He gradient were achieved for the BaCo0.4Fe0.4Zr0.2O3-delta material. Meanwhile, the effect of carbon dioxide on structural stability and oxygen permeability of this material was also studied in detail, which revealed that the reversible stability could be attained for it. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A novel and ideal dense catalytic membrane reactor for the reaction of partial oxidation of methane to syngas (POM) was constructed from the stable mixed conducting perovskite material of BaCo0.4Fe0.4Zr0.2O3-delta and the catalyst of LiLaNiO/gamma-Al2O3. The POM reaction was performed successfully. Not only was a short induction period of 2 h obtained, but also a high catalytic performance of 96-98% CH4 conversion, 98-99% CO selectivity and an oxygen permeation flux of 5.4-5.8 ml cm(-2) min(-1) (1.9-2.) mumol m(-2) S-1 Pa-1) at 850 degreesC were achieved. Moreover, the reaction has been steadily carried out for more than 2200 h, and no interaction between the membrane material and the catalyst took place.
Resumo:
A NaA zeolite membrane was synthesized on the surface of the stainless steel stab. The membrane was characterized by XRD and SEM. The membrane was continuous and highly intergrown. The size of NaA zeolite crystals was about 5 similar to 6 mum.