978 resultados para EMISSION-SPECTRA
Resumo:
Ga and In co-doped ZnO (GIZO) thin films together with ZnO, In-doped ZnO (IZO), Ga-doped ZnO (GZO), and IZO/GZO multilayer for comparison, were grown on corning glass and boron doped Si substrates by PLD. The photoluminescence spectra of GIZO showed a strong white light emission and the current-voltage characteristics showed relatively lower turn-on voltage and larger forward current. The CIE coordinates for GIZO were observed to be (0.31, 0.33) with a correlated colour temperature of 6650 K, indicating a cool white light, and establishing a possibility of white light emitting diodes. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
In this work, we present field emission characteristics of multi-wall carbon nanotube (MWCNT)-polystyrene composites at various weight fractions along the cross-section of sample. Scanning electron microscope images in cross-sectional view reveal that MWCNTs are homogeneously distributed across the thickness and the density of protruding tubes can be scaled with weight fraction of the composite film. Field emission from composites has been observed to vary considerably with density of MWCNTs in the polymer matrix. High current density of 100 mA/cm(2) was achieved at a field of 2.2 V/lm for 0.15 weight fraction. The field emission is observed to follow the Fowler-Nordheim tunneling mechanism, however, electrostatic screening is observed to play a role in limiting the current density at higher weight fractions. (C) 2012 American Institute of Physics. [doi:10.1063/1.3685754]
Resumo:
The present study reports a two dimensional NMR experiment which separates single quantum spectra of enantiomers from that of a racemic mixture. This is a blend of selective double quantum refocusing, for resolving couplings and chemical shift interactions along two dimensions followed by correlation of the selectively excited protons to the entire coupled spin network. The concept is solely based on the presence of distinct intra methyl dipolar couplings of different enantiomers when dissolved in chiral orienting media. The analysis of single enantiomer spectrum obtained from respective F-2 cross sections yield all the spectral information. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This article presents a review of recent developments in parametric based acoustic emission (AE) techniques applied to concrete structures. It recapitulates the significant milestones achieved by previous researchers including various methods and models developed in AE testing of concrete structures. The aim is to provide an overview of the specific features of parametric based AE techniques of concrete structures carried out over the years. Emphasis is given to traditional parameter-based AE techniques applied to concrete structures. A significant amount of research on AE techniques applied to concrete structures has already been published and considerable attention has been given to those publications. Some recent studies such as AE energy analysis and b-value analysis used to assess damage of concrete bridge beams have also been discussed. The formation of fracture process zone and the AE energy released during the fracture process in concrete beam specimens have been summarised. A large body of experimental data on AE characteristics of concrete has accumulated over the last three decades. This review of parametric based AE techniques applied to concrete structures may be helpful to the concerned researchers and engineers to better understand the failure mechanism of concrete and evolve more useful methods and approaches for diagnostic inspection of structural elements and failure prediction/prevention of concrete structures.
Resumo:
Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800A degrees C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV-Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer's method and Williamson-Hall plots and are found to be in the ranges 40-60 nm and 30-80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at similar to 590, 612 and 625 nm, which are due to the transitions D-5(0)-> F-7(0), D-5(0)-> F-7(2) and D-5(0)-> F-7(3) of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s(2)-> 6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380A degrees C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.
Resumo:
Acoustic emission (AE) testing is a well-known method for damage identification of various concrete structures including bridges. This article presents a method to assess damage in reinforced concrete (RC) bridge beams subjected to incremental cyclic loading. The specifications in the standard NDIS-2421 were used to classify the damage in RC bridge beams. Earlier researchers classified the damage occurring in bridge beams by using crack mouth opening displacement (CMOD) and AE released and proposed a standard (NDIS-2421: the Japanese Society for NonDestructive Inspection). In general, multiple cracks take place in RC beams under bending; therefore, utilisation of CMOD for crack detection may not be appropriate. In the present study, the damage in RC beams is classified by using the AE released, deflection, strains in steel and concrete, because the measurement of the strains in steel and concrete is easy and the codes of practice are specified for different limit states (IS-456:2000). The observations made in the present experimental study have some important practical applications in assessing the state of damage of concrete structural members.
Resumo:
The photoluminescence study of Fermi-edge singularity (FES) in modulation-doped pseudomorphic AlxGa1-xAs/InyGa1-yAs/GaAs quantum well (QW) heterostructures is presented. In the above QW structures the optical transitions between n = 1 and n = 2 electronic subband to the n = 1 heavy hole subband (E-11 and E-21 transitions, respectively) are observed with FES appearing as a lower energy shoulder to the E-21 transition. The observed FES is attributed to the Fermi wave vector in the first electronic subband under the conditions of population of the second electronic subband. The FES appears at about 10 meV below E-21 transition around 4.2 K. Initially it gets stronger with increasing temperature and becomes a distinct peak at about 20 K. Further increase in temperature quenches FES and reaches the base line at around 40 K.
Resumo:
In the context of the standard model with a fourth generation, we explore the allowed mass spectra in the fourth-generation quark and lepton sectors as functions of the Higgs mass. Using the constraints from unitarity and oblique parameters, we show that a heavy Higgs allows large mass splittings in these sectors, opening up new decay channels involving W emission. Assuming that the hints for a light Higgs do not yet constitute an evidence, we work in a scenario where a heavy Higgs is viable. A Higgs heavier than similar to 800 GeV would in fact necessitate either a heavy quark decay channel t' -> b'W/b' -> t'W or a heavy lepton decay channel tau' -> nu'W as long as the mixing between the third and fourth generations is small. This mixing tends to suppress the mass splittings and hence the W-emission channels. The possibility of the W-emission channel could substantially change the search strategies of fourth-generation fermions at the LHC and impact the currently reported mass limits.
Resumo:
Poly (beta-L-malic acid) (PMLA) is a biodegradable polymer and it has various important applications in the biomedical field. In the present work the structural and spectral characteristics of PMLA have been studied by methods of infrared. Raman spectroscopy and quantum chemistry. Electrostatic potential surface, optimized geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by density functional theory (DFT) using oligomeric approach employing B3LYP with complete relaxation in the potential energy surface using 6-311++G (d, p) basis set. Based on results, we have discussed the correlation between the vibrational modes and the structure of the PMLA. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The calculated infrared and the Raman spectra of the polymer based on DFT calculations show reasonable agreement with the experimental results. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Infrared spectra of atmospherically and astronomically important dimethylphenanthrenes (DMPs), namely 1,9-DMP, 2,4-DMP, and 3,9-DMP, were recorded in the gas phase from 400 to 4000 cm(-1) with a resolution of 0.5 cm(-1) at 110 degrees C using a 7.2 m gas cell. DFT calculations at the B3LYP/6-311G** level were carried out to get the harmonic and anharmonic frequencies and their corresponding intensities for the assignment of the observed bands. However, spectral assignments could not be made unambiguously using anharmonic or selectively scaled harmonic frequencies. Therefore, the scaled quantum mechanical (SQM) force field analysis method was adopted to achieve more accurate assignments. In this method force fields instead of frequencies were scaled. The Cartesian force field matrix obtained from the Gaussian calculations was converted to a nonredundant local coordinate force field matrix and then the force fields were scaled to match experimental frequencies in a consistent manner using a modified version of the UMAT program of the QCPE package. Potential energy distributions (PEDs) of the normal modes in terms of nonredundant local coordinates obtained from these calculations helped us derive the nature of the vibration at each frequency. The intensity of observed bands in the experimental spectra was calculated using estimated vapor pressures of the DMPs. An error analysis of the mean deviation between experimental and calculated intensities reveal that the observed methyl C-H stretching intensity deviates more compared to the aromatic C-H and non C-H stretching bands.
Resumo:
Cadmium selenide (CdSe) thin films have been successfully prepared by the electrodeposition technique on indium doped tin oxide (ITO) substrates with aqueous solutions of cadmium sulphate and selenium dioxide. The deposited films were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by X-rays (EDAX), photoluminescence (PL), UV spectrometry and electrical resistivity measurements. XRD analysis shows that the films are polycrystalline in nature with hexagonal crystalline structure. The various parameters such as crystallite size, micro strain, dislocation density and texture coefficients were evaluated. SEM study shows that the total substrate surface is well covered with uniformly distributed spherical shaped grains. Photoluminescence spectra of films were recorded to understand the emission properties of the films. The presence of direct transition with band gap energy 1.75 eV is established from optical studies. The electrical resistivity of the thin films is found to be 10(6) Omega cm and the results are discussed. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Notched three point bend (TPB) specimens made with plain concrete and cement mortar were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and simultaneously acoustic emissions (AE) released were recorded during the experiments. Amplitude distribution analysis of AE released during concrete was carried out to study the development of fracture process in concrete and mortar specimens. The slope of the log-linear frequency-amplitude distribution of AE is known as the AE based b-value. The AE based b-value was computed in terms of physical process of time varying applied load using cumulative frequency distribution (Gutenberg-Richter relationship) and discrete frequency distribution (Aki's method) of AE released during concrete fracture. AE characteristics of plain concrete and cement mortar were studied and discussed and it was observed that the AE based b-value analysis serves as a tool to identify the damage in concrete structural members. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report our search for and a possible detection of periodic radio pulses at 34.5 MHz from the Fermi Large Area Telescope pulsar J1732-3131. The candidate detection has been possible in only one of the many sessions of observations made with the low-frequency array at Gauribidanur, India, when the otherwise radio weak pulsar may have apparently brightened many folds. The candidate dispersion measure along the sight line, based on the broad periodic profiles from �20min of data, is estimated to be 15.44 ± 0.32 pccc -1. We present the details of our periodic and single-pulse search, and discuss the results and their implications relevant to both, the pulsar and the intervening medium. © 2012 RAS.