939 resultados para ELECTROLUMINESCENT POLYMER-FILMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theranostics offers an improved treatment strategy for prostate cancer by facilitating simultaneous targeting of tumour cells with subsequent drug delivery and imaging. In this report we describe the synthesis of hyperbranched polymers that are biocompatible, can specifically target and be internalised by prostate cancer cells (through targeting of prostate-specific membrane antigen – PSMA) and ultimately facilitate controlled delivery of a model drug. The theranostic also incorporates a far-red fluorescent dye that allows tracking of the polymer via optical imaging. Controlled synthesis of the polymer is achieved via reversible addition fragmentation chain transfer polymerisation of polyethylene glycol monomethyl methacrylate, with ethylene glycol dimethacrylate as the branching agent. Incorporation of 20 mol% of an hydrazide-methacrylate monomer allows post-ligation of a model drug, fluorene-2-carboxaldehyde, through a hydrolytically-degradable hydrazone linkage. The rate of degradation of this particular linker was enhanced at endosomal pH (pH = 5.5) where [similar]95% of the model drug was released in 4 hours compared to less than 5% released over the same period at physiological pH. The theranostic showed high uptake into prostate cancer cells expressing prostate-specific membrane antigen, while minimal uptake was observed in PC3 cells negative for PSMA, highlighting the enhanced efficacy of the targeting ligand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of CdS nanoparticles incorporated onto mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV-visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm when SILAR cycles were fewer than 9. Quantum size effect was found with the CdS sensitized TiO2 films prepared with up to 9 SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 eV to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO2 films in air under illumination (440.6 µW/cm2) showed that the photodegradation rate was up to 85% per day for the sample prepared with 3 SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO4). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular Dynamics (MD) simulation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS11, particle size = 5.6 nm) accounts for 9.6% of the material whereas this value is increased to 19.2% for (CdS3) based smaller particles (particle size: 2.7 nm). Nevertheless, CdS nanoparticles coated with ZnS material showed a significantly enhanced stability under illumination in air. A nearly 100% protection of CdS from photon induced oxidation with a ZnS coating layer prepared using four SILAR cycles, suggesting the formation of a nearly complete coating layer on the CdS nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As one of the transition metal oxides, niobium pentoxide (Nb2O5) offers a broad variety of properties that make it a potentially useful and highly applicable material in many different areas. In comparison to many other transition metal oxides, Nb2O5 has received relatively little attention, which presents a significant opportunity for future investigations aimed at fundamentally understanding this material and finding new and interesting applications for it. In this article, a general overview of Nb2O5 is presented which focuses on its fundamental properties, synthesis methods and recent applications, along with a discussion on future research directions relevant to this material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Ag-TiO2 and Au-TiO2 hybrid electrodes were designed by covalent attachment of TiO2 nanoparticles to Ag or Au electrodes via an organic linker. The optical and electronic properties of these systems were investigated using the cytochrome b5 (Cyt b5) domain of sulfite oxidase, exclusively attached to the TiO2 surface, as a Raman marker and model redox enzyme. Very strong SERR signals of Cyt b 5 were obtained for Ag-supported systems due to plasmonic field enhancement of Ag. Time-resolved surface-enhanced resonance Raman spectroscopic measurements yielded a remarkably fast electron transfer kinetic (k = 60 s -1) of Cyt b5 to Ag. A much lower Raman intensity was observed for Au-supported systems with undefined and slow redox behavior. We explain this phenomenon on the basis of the different potential of zero charge of the two metals that largely influence the electronic properties of the TiO2 island film. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the fabrication of thin films of porphyrin and metallophthalocyanine derivatives on different substrates for the optochemical detection of HCl gas and electrochemical determination of L-cysteine (CySH). Solid state gas sensor for HCl gas was fabricated by coating meso-substituted porphyrin derivatives on glass slide and examined optochemical sensing of HCl gas. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band. Among the different porphyrin derivatives, meso- tetramesitylporphyrin (MTMP) coated film showed excellent sensitivity towards HCl and achieved a detection limit of 0.03ppm HCl. Further, we have studied the self-assembly of 1,8,15,22-tetraaminometallophthalocyanine (4α-MTAPc; M = Co and Ni) from DMF on GC electrode. The CVs for the self-assembled monolayers (SAMs) of 4α-CoIITAPc and 4α-NiIITAPc show two pairs of well-defined redox couple corresponding to metal and ring. Using the 4α-CoIITAPc SAM modified electrode, sensitive and selective detection of L-cysteine was demonstrated. Further, the SAM modified electrode also successfully separates the oxidation potentials of AA and CySH with a peak separation of 320mV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electropolymerized films of teraaminometallophthalocyanines (MTAPc; M = Ni and Co) with amino groups at α- (4α-MTAPc) and β- (4β-MTAPc) positions were prepared on glassy carbon (GC) and indium tin oxide (ITO) electrodes. It was found that the electropolymerization growth rate of 4α-MTAPc was less than that of 4β-MTAPc prepared under identical conditions. Further, the surface coverage of the polymerized 4β-MTAPc film was greater than that of 4α-MTAPc polymerized film. Atomic force microscopy (AFM), X-ray diffraction (XRD) and UV–visible spectroscopic studies were carried out for the polymerized films of 4α-NiIITAPc (p-4α-NiIITAPc) and 4β-NiIITAPc (p-4β-NiIITAPc) alone because both Ni(II) and Co(II) polymerized films show similar trend in electropolymerization and surface coverage values. AFM images show that p-4α-NiIITAPc film contains islands and the thickness of this film was nearly three times less than that of p-4β-NiIITAPc. XRD patterns for the two polymerized films reveal that p-4β-NiIITAPc film was relatively more crystalline than p-4α-NiIITAPc film. Further, the compactness of these films was scrutinized from their barrier properties toward [Fe(CN)6]3−/4− redox couple. The differences in the polymerization growth rate of 4α-MTAPc and 4β-MTAPc, and the thicknesses of the resultant polymerized films suggest that unlike 4β-MTAPc one or two amino groups might have not involved in electropolymerization in the case of 4α-MTAPc. Further, the influence of surface coverage on the electrocatalytic properties of the polymerized films was studied by taking p-4β-CoIITAPc and p-4α-CoIITAPc films as examples. The electrocatalytic oxygen reduction current was almost same at both the electrodes suggesting that only the surface species were involved in the electrocatalytic reduction of oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled monomolecular films of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) and 2,9,16,23-tetraaminophthalocyanatocobalt(II) (4β-CoIITAPc) on Au surfaces were prepared by spontaneous adsorption from solution. These films were characterized by cyclic voltammetry and Raman spectroscopy. Both the surface coverage (Γ) and intensity of the in-plane stretching bands obtained from Raman studies vary for these monomolecular films, indicating different orientations adopted by them on Au surfaces. The 4α-CoIITAPc-modified electrode exhibits an E1/2 of 0.35 V, while the 4β-CoIITAPc-modified electrode exhibits an E1/2 of 0.19 V, corresponding to the CoII/CoIII redox couple in 0.1 M H2SO4. The Γ estimated from the charge associated with the oxidation of Co(II) gives (2.62 ± 0.10) × 10-11 mol cm-2 for 4α-CoIITAPc and (3.43 ± 0.14) × 10-10 mol cm-2 for 4β-CoIITAPc. In Raman spectral studies, the intensity ratio between in-plane phthalocyanine (Pc) stretching and the Au−N stretching was found to be 6.6 for 4β-CoIITAPc, while it was 1.6 for 4α-CoIITAPc. The obtained lower Γ and intensity ratio values suggest that 4α-CoIITAPc adopts nearly a parallel orientation on the Au surface, while the higher Γ and intensity ratio values suggest that 4β-CoIITAPc adopts a perpendicular orientation. The electrochemical reduction of dioxygen was carried out using these differently oriented Pc's in phosphate buffer solution (pH 7.2). Both the Pc's catalyze the reduction of dioxygen; however, the 4α-CoIITAPc-modified electrode greatly reduces the dioxygen reduction overpotential compared to 4β-CoIITAPc-modified and bare Au electrodes.