961 resultados para Dynamic routing
Resumo:
Genetic algorithms are commonly used to solve combinatorial optimizationproblems. The implementation evolves using genetic operators (crossover, mutation,selection, etc.). Anyway, genetic algorithms like some other methods have parameters(population size, probabilities of crossover and mutation) which need to be tune orchosen.In this paper, our project is based on an existing hybrid genetic algorithmworking on the multiprocessor scheduling problem. We propose a hybrid Fuzzy-Genetic Algorithm (FLGA) approach to solve the multiprocessor scheduling problem.The algorithm consists in adding a fuzzy logic controller to control and tunedynamically different parameters (probabilities of crossover and mutation), in anattempt to improve the algorithm performance. For this purpose, we will design afuzzy logic controller based on fuzzy rules to control the probabilities of crossoverand mutation. Compared with the Standard Genetic Algorithm (SGA), the resultsclearly demonstrate that the FLGA method performs significantly better.
Resumo:
This Thesis Work will concentrate on a very interesting problem, the Vehicle Routing Problem (VRP). In this problem, customers or cities have to be visited and packages have to be transported to each of them, starting from a basis point on the map. The goal is to solve the transportation problem, to be able to deliver the packages-on time for the customers,-enough package for each Customer,-using the available resources- and – of course - to be so effective as it is possible.Although this problem seems to be very easy to solve with a small number of cities or customers, it is not. In this problem the algorithm have to face with several constraints, for example opening hours, package delivery times, truck capacities, etc. This makes this problem a so called Multi Constraint Optimization Problem (MCOP). What’s more, this problem is intractable with current amount of computational power which is available for most of us. As the number of customers grow, the calculations to be done grows exponential fast, because all constraints have to be solved for each customers and it should not be forgotten that the goal is to find a solution, what is best enough, before the time for the calculation is up. This problem is introduced in the first chapter: form its basics, the Traveling Salesman Problem, using some theoretical and mathematical background it is shown, why is it so hard to optimize this problem, and although it is so hard, and there is no best algorithm known for huge number of customers, why is it a worth to deal with it. Just think about a huge transportation company with ten thousands of trucks, millions of customers: how much money could be saved if we would know the optimal path for all our packages.Although there is no best algorithm is known for this kind of optimization problems, we are trying to give an acceptable solution for it in the second and third chapter, where two algorithms are described: the Genetic Algorithm and the Simulated Annealing. Both of them are based on obtaining the processes of nature and material science. These algorithms will hardly ever be able to find the best solution for the problem, but they are able to give a very good solution in special cases within acceptable calculation time.In these chapters (2nd and 3rd) the Genetic Algorithm and Simulated Annealing is described in details, from their basis in the “real world” through their terminology and finally the basic implementation of them. The work will put a stress on the limits of these algorithms, their advantages and disadvantages, and also the comparison of them to each other.Finally, after all of these theories are shown, a simulation will be executed on an artificial environment of the VRP, with both Simulated Annealing and Genetic Algorithm. They will both solve the same problem in the same environment and are going to be compared to each other. The environment and the implementation are also described here, so as the test results obtained.Finally the possible improvements of these algorithms are discussed, and the work will try to answer the “big” question, “Which algorithm is better?”, if this question even exists.
Resumo:
This paper is concerned with the modern theory of social cost-benefit analysis in a dynamic economy. The theory emphasizes the role of a comprehensive, forward-looking, dynamic welfare index within the period of the project rather than that of a project's long-term consequences. However, what constitutes such a welfare index remains controversial in the recent literature. In this paper, we attempt to shed light on the issue by deriving three equivalent cost-benefit rules for evaluating a small project. In particular, we show that the direct change in net national product (NNP) qualifies as a convenient welfare index without involving any other induced side effects. The project evaluation criterion thus becomes the present discounted value of the direct changes in NNP over the project period. We also illustrate the application of this theory in a few stylized examples.
Resumo:
Objective: For the evaluation of the energetic performance of combined renewable heating systems that supply space heat and domestic hot water for single family houses, dynamic behaviour, component interactions, and control of the system play a crucial role and should be included in test methods. Methods: New dynamic whole system test methods were developed based on “hardware in the loop” concepts. Three similar approaches are described and their differences are discussed. The methods were applied for testing solar thermal systems in combination with fossil fuel boilers (heating oil and natural gas), biomass boilers, and/or heat pumps. Results: All three methods were able to show the performance of combined heating systems under transient operating conditions. The methods often detected unexpected behaviour of the tested system that cannot be detected based on steady state performance tests that are usually applied to single components. Conclusion: Further work will be needed to harmonize the different test methods in order to reach comparable results between the different laboratories. Practice implications: A harmonized approach for whole system tests may lead to new test standards and improve the accuracy of performance prediction as well as reduce the need for field tests.