974 resultados para Duct sizing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dicer encodes a riboendonuclease required for microRNA biosynthesis. Dicer was inactivated in Müllerian duct mesenchyme-derived tissues of the reproductive tract of the mouse, using an Amhr2-Cre allele. Although Amhr2-Cre; Dicer conditional mutant males appeared normal and were fertile, mutant females were infertile. In adult mutant females, there was a reduction in the size of the oviducts and uterine horns. The oviducts were less coiled compared to controls and cysts formed at the isthmus near the uterotubal junction. Unfertilized, degenerate oocytes were commonly found within these cysts, indicating a defect in embryo transit. Beads transferred into the mutant oviduct failed to migrate into the uterus. In addition, blastocysts transferred directly into the mutant uterus did not result in pregnancy. Histological analysis demonstrated that the mutant uterus contained less glandular tissue and often the few glands that remained were found within the myometrium, an abnormal condition known as adenomyosis. In adult mutants, there was ectopic expression of Wnt4 and Wnt5a in the luminal epithelium (LE) and glandular epithelium (GE) of the uterus, and Wnt11 was ectopically expressed in GE. These results demonstrate that Dicer is necessary for postnatal differentiation of Müllerian duct mesenchyme-derived tissues of the female reproductive tract, suggesting that microRNAs are important regulators of female reproductive tract development and fertility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Infection of pancreatic necrosis in necrotizing pancreatitis increases the lethality of patients with acute pancreatitis. To examine mechanisms underlying this clinical observation, we developed and tested a model, in which primary infection of necrosis is achieved in taurocholate-induced pancreatitis in mice. METHODS Sterile necrosis of acute necrotizing pancreatitis was induced by retrograde injection of 4% taurocholate into the common bile duct of Balb/c mice. Primary infection of pancreatic necrosis was induced by coinjecting 10 colony-forming units of Escherichia coli. Animals were killed after 6, 12, 24, 48, and 120 hours, and pancreatic damage and pancreatitis-associated systemic inflammatory response were assessed. RESULTS Mice with pancreatic acinar cell necrosis had an increased bacterial concentration in all tissues and showed sustained bacteremia. Acute pancreatitis was induced only by coinjection of taurocholate and not by bacterial infection alone. Infection of pancreatic necrosis increased pancreatic damage and the pulmonary vascular leak. Serum glucose concentrations serving as a parameter of hepatic function were reduced in mice with infected pancreatic necrosis. CONCLUSIONS Primary infection of pancreatic necrosis with E. coli increases both pancreatic damage and pulmonary and hepatic complications in acute necrotizing pancreatitis in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The H(+)-K(+)-ATPase alpha(2) (HKalpha2) gene of the renal collecting duct and distal colon plays a central role in potassium and acid-base homeostasis, yet its transcriptional control remains poorly characterized. We previously demonstrated that the proximal 177 bp of its 5'-flanking region confers basal transcriptional activity in murine inner medullary collecting duct (mIMCD3) cells and that NF-kappaB and CREB-1 bind this region to alter transcription. In the present study, we sought to determine whether the -144/-135 Sp element influences basal HKalpha2 gene transcription in these cells. Electrophoretic mobility shift and supershift assays using probes for -154/-127 revealed Sp1-containing DNA-protein complexes in nuclear extracts of mIMCD3 cells. Chromatin immunoprecipitation (ChIP) assays demonstrated that Sp1, but not Sp3, binds to this promoter region of the HKalpha2 gene in mIMCD3 cells in vivo. HKalpha2 minimal promoter-luciferase constructs with point mutations in the -144/-135 Sp element exhibited much lower activity than the wild-type promoter in transient transfection assays. Overexpression of Sp1, but not Sp3, trans-activated an HKalpha2 proximal promoter-luciferase construct in mIMCD3 cells as well as in SL2 insect cells, which lack Sp factors. Conversely, small interfering RNA knockdown of Sp1 inhibited endogenous HKalpha2 mRNA expression, and binding of Sp1 to chromatin associated with the proximal HKalpha2 promoter without altering the binding or regulatory influence of NF-kappaB p65 or CREB-1 on the proximal HKalpha2 promoter. We conclude that Sp1 plays an important and positive role in controlling basal HKalpha2 gene expression in mIMCD3 cells in vivo and in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aldosterone plays a major role in the regulation of salt balance and the pathophysiology of cardiovascular and renal diseases. Many aldosterone-regulated genes--including that encoding the epithelial Na+ channel (ENaC), a key arbiter of Na+ transport in the kidney and other epithelia--have been identified, but the mechanisms by which the hormone modifies chromatin structure and thus transcription remain unknown. We previously described the basal repression of ENaCalpha by a complex containing the histone H3 Lys79 methyltransferase disruptor of telomeric silencing alternative splice variant a (Dot1a) and the putative transcription factor ALL1-fused gene from chromosome 9 (Af9) as well as the release of this repression by aldosterone treatment. Here we provide evidence from renal collecting duct cells and serum- and glucocorticoid-induced kinase-1 (Sgk1) WT and knockout mice that Sgk1 phosphorylated Af9, thereby impairing the Dot1a-Af9 interaction and leading to targeted histone H3 Lys79 hypomethylation at the ENaCalpha promoter and derepression of ENaCalpha transcription. Thus, Af9 is a physiologic target of Sgk1, and Sgk1 negatively regulates the Dot1a-Af9 repressor complex that controls transcription of ENaCalpha and likely other aldosterone-induced genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphogenesis is the process by which the 3-dimensional structure of the developing embryo takes shape. We are studying xlcaax-1, a gene whose product can be used as a molecular marker for several morphogenetic events. We report here the cellular and subcellular localization of the xlcaax-1 protein during development of Xenopus laevis. Whole mount immunocytochemistry and immunoperoxidase staining of tissue sections showed that during development the xlcaax-1 protein accumulation was coincident with the differentiation of the epidermis, pronephros and mesonephros. In the pronephros and mesonephros the xlcaax-1 protein was localized to the basolateral membrane of differentiated tubule epithelial cells. Thus, the xlcaax-1 protein served as a marker for tubule formation and polarization during Xenopus kidney development. Xlcaax-1 may also be used as a marker for the functional differentiation of the epidermis and the epidermally derived portions of the lens and some cranial nerves. The xlcaax-1 protein was most abundant in kidney and immunogold EM analysis showed that the xlcaax-1 protein was highly enriched in the basal infoldings of the basolateral membrane of the epithelial cells in adult kidney distal tubules. The xlcaax-1 protein was also localized in other ion transporting epithelia. The localization pattern and preliminary functional assays of xlcaax-1 suggest that the protein may function in association with an ion transport channel or pump.^ Cell migration and cell-cell interactions play important roles in numerous processes during morphogenesis. One of these is the formation of the pronephric (wolffian) duct (PD), which connects the pronephros to the cloaca. It is currently accepted that in most amphibians the pronephric duct is formed by active migration of the pronephric duct rudiment (PDR) cells along a pre-determined pathway. However, there is evidence that in Xenopus, the PD may be formed entirely by in situ segregation of cells out of the lateral mesoderm. In this study, we showed, using PDR ablation and X. laevis - X. borealis chimeras, that PD elongation in Xenopus required both active cell migration and an induced recruitment of cells from the posterior lateral plate mesoderm. We also showed that PDR cell migration was limited to only a few stages during development and that this temporal control is due, at least in part, to changes in the competence of the PD pathway to support cell migration. In addition, our data suggested that an alkaline phosphatase (APase) adhesion gradient may be involved in determining this competence. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Limited information exists describing the results of transcatheter aortic valve (TAV) replacement in patients with bicuspid aortic valve (BAV) disease (TAV-in-BAV). OBJECTIVES This study sought to evaluate clinical outcomes of a large cohort of patients undergoing TAV-in-BAV. METHODS We retrospectively collected baseline characteristics, procedural data, and clinical follow-up findings from 12 centers in Europe and Canada that had performed TAV-in-BAV. RESULTS A total of 139 patients underwent TAV-in-BAV with the balloon-expandable transcatheter heart valve (THV) (n = 48) or self-expandable THV (n = 91) systems. Patient mean age and Society of Thoracic Surgeons predicted risk of mortality scores were 78.0 ± 8.9 years and 4.9 ± 3.4%, respectively. BAV stenosis occurred in 65.5%, regurgitation in 0.7%, and mixed disease in 33.8% of patients. Incidence of type 0 BAV was 26.7%; type 1 BAV was 68.3%; and type 2 BAV was 5.0%. Multislice computed tomography (MSCT)-based TAV sizing was used in 63.5% of patients (77.1% balloon-expandable THV vs. 56.0% self-expandable THV, p = 0.02). Procedural mortality was 3.6%, with TAV embolization in 2.2% and conversion to surgery in 2.2%. The mean aortic gradient decreased from 48.7 ± 16.5 mm Hg to 11.4 ± 9.9 mm Hg (p < 0.0001). Post-implantation aortic regurgitation (AR) grade ≥2 occurred in 28.4% (19.6% balloon-expandable THV vs. 32.2% self-expandable THV, p = 0.11) but was prevalent in only 17.4% when MSCT-based TAV sizing was performed (16.7% balloon-expandable THV vs. 17.6% self-expandable THV, p = 0.99). MSCT sizing was associated with reduced AR on multivariate analysis (odds ratio [OR]: 0.19, 95% confidence intervals [CI]: 0.08 to 0.45; p < 0.0001). Thirty-day device safety, success, and efficacy were noted in 79.1%, 89.9%, and 84.9% of patients, respectively. One-year mortality was 17.5%. Major vascular complications were associated with increased 1-year mortality (OR: 5.66, 95% CI: 1.21 to 26.43; p = 0.03). CONCLUSIONS TAV-in-BAV is feasible with encouraging short- and intermediate-term clinical outcomes. Importantly, a high incidence of post-implantation AR is observed, which appears to be mitigated by MSCT-based TAV sizing. Given the suboptimal echocardiographic results, further study is required to evaluate long-term efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An exponential increase in the use of transcatheter aortic valve implantation (TAVI) in patients with severe aortic stenosis has been witnessed over the recent years. The current article reviews different areas of uncertainty related to patient selection. The use and limitations of risk scores are addressed, followed by an extensive discussion on the value of three-dimensional imaging for prosthesis sizing and the assessment of complex valve anatomy such as degenerated bicuspid valves. The uncertainty about valvular stenosis severity in patients with a mismatch between the transvalvular gradient and the aortic valve area, and how integrated use of echocardiography and computed tomographic imaging may help, is also addressed. Finally, patients referred for TAVI may have concomitant mitral regurgitation and/or coronary artery disease and the management of these patients is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES This study reports a series of pitfalls, premature failures and explantations of the third-generation Freedom SOLO (FS) bovine pericardial stentless valve. METHODS A total of 149 patients underwent aortic valve replacement using the FS. Follow-up was 100% complete with an average observation time of 5.5 ± 2.3 years (maximum 8.7 years) and a total of 825 patient-years. Following intraoperative documentation, all explanted valve prostheses underwent histological examination. RESULTS Freedom from structural valve deterioration (SVD) at 5, 6, 7, 8 and 9 years was 92, 88, 80, 70 and 62%, respectively. Fourteen prostheses required explantation due to valve-independent dysfunction (n = 5; i.e. thrombus formation, oversizing, aortic dilatation, endocarditis and suture dehiscence) or valve-dependent failure (acute leaflet tears, n = 4 and severe stenosis, n = 5). Thus, freedom from explantation at 5, 6, 7, 8 and 9 years was 95, 94, 91, 81 and 72%, respectively. An acute vertical tear along the non-coronary/right coronary commissure to the base occurred at a mean of 6.0 years (range 4.3-7.3 years) and affected size 25 and 27 prostheses exclusively. Four FS required explantation after a mean of 7.5 years (range 7.0-8.3 years) due to severe functional stenosis and gross calcification that included the entire aortic root. CONCLUSIONS The FS stentless valve is safe to implant and shows satisfying mid-term results in our single institution experience. Freedom from SVD and explantation decreased markedly after only 6-7 years, so that patients with FS require close observation and follow-up. Exact sizing, symmetric positioning and observing patient limitations are crucial for optimal outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: The third-generation bovine pericardium Freedom SOLO (FS) stentless valve emerged in 2004 as a modified version of the Pericarbon Freedom stentless valve and as a very attractive alternative to stented bioprostheses. The design, choice of tissue, and anticalcification treatment fulfill most, if not all, requirements for an ideal valve substitute. The FS combines the single-suture, subcoronary implantation technique with the latest-generation bovine pericardial tissue and novel anticalcification treatment. The design allows imitation of the native healthy valve through unrestricted adaption to the patient's anatomy, reproducing a normal valve/root complex. However, despite hemodynamic performance superior to stented valves, we are approaching a critical observation period as superior durability, freedom from structural valve deterioration, and nonstructural failure has not been proven as expected. However, optimal performance and freedom from structural valve deterioration depend on correct sizing and perfect symmetric implantation, to ensure low leaflet stress. Any malpositioning can lead to tissue fatigue over time. Furthermore, the potential for better outcomes depends on optimal patient selection and observance of the limitations for the use of stentless valves, particularly for the FS. Clearly, stentless valve implantation techniques are less reproducible and standardized, and require surgeon-dependent experience and skill. Regardless of whether or not stentless valve durability surpasses third-generation stented bioprostheses, they will continue to play a role in the surgical repertoire. This review intends to help practitioners avoid pitfalls, observe limitations, and improve patient selection for optimal long-term outcome with the attractive FS stentless valve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arginine vasopressin (AVP) has a key role in osmoregulation by facilitating water transport in the collecting duct. Recent evidence suggests that AVP may have additional effects on renal function and favor cyst growth in polycystic kidney disease. Whether AVP also affects kidney structure in the general population is unknown. We analyzed the association of copeptin, an established surrogate for AVP, with parameters of renal function and morphology in a multicentric population-based cohort. Participants from families of European ancestry were randomly selected in three Swiss cities. We used linear multilevel regression analysis to explore the association of copeptin with renal function parameters as well as kidney length and the presence of simple renal cysts assessed by ultrasound examination. Copeptin levels were log-transformed. The 529 women and 481 men had median copeptin levels of 3.0 and 5.2 pmol/L, respectively (P<0.001). In multivariable analyses, the copeptin level was associated inversely with eGFR (β=-2.1; 95% confidence interval [95% CI], -3.3 to -0.8; P=0.002) and kidney length (β=-1.2; 95% CI, -1.9 to -0.4; P=0.003) but positively with 24-hour urinary albumin excretion (β=0.11; 95% CI, 0.01 to 0.20; P=0.03) and urine osmolality (β=0.08; 95% CI, 0.05 to 0.10; P<0.001). A positive association was found between the copeptin level and the presence of renal cysts (odds ratio, 1.6; 95% CI, 1.1 to 2.4; P=0.02). These results suggest that AVP has a pleiotropic role in renal function and may favor the development of simple renal cysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES Evaluation of computed tomography (CT) and magnetic resonance imaging (MRI) for differentiation of pancreatic intraductal papillary mucinous neoplasm (IPMN) subtypes based on objective imaging criteria. METHODS Fifty-eight patients with 60 histologically confirmed IPMNs were included in this retrospective study. Eighty-three imaging studies (CT,n = 42; MRI,n = 41) were analysed by three independent blinded observers (O1-O3), using established imaging criteria to assess likelihood of malignancy (-5, very likely benign; 5, very likely malignant) and histological subtype (i.e., low-grade (LGD), moderate-grade (MGD), high-grade dysplasia (HGD), early invasive carcinoma (IPMC), solid carcinoma (CA) arising from IPMN). RESULTS Forty-one benign (LGD IPMN,n = 20; MGD IPMN,n = 21) and 19 malignant (HGD IPMN,n = 3; IPMC,n = 6; solid CA,n = 10) IPMNs located in the main duct (n = 6), branch duct (n = 37), or both (n = 17) were evaluated. Overall accuracy of differentiation between benign and malignant IPMNs was 86/92 % (CT/MRI). Exclusion of overtly malignant cases (solid CA) resulted in overall accuracy of 83/90 % (CT/MRI). The presence of mural nodules and ductal lesion size ≥30 mm were significant indicators of malignancy (p = 0.02 and p < 0.001, respectively). CONCLUSIONS Invasive IPMN can be identified with high confidence and sensitivity using CT and MRI. The diagnostic problem that remains is the accurate radiological differentiation of premalignant and non-invasive subtypes. KEY POINTS • CT and MRI can differentiate benign from malignant forms of IPMN. • Identifying (pre)malignant histological IPMN subtypes by CT and MRI is difficult. • Overall, diagnostic performance with MRI was slightly (not significantly) superior to CT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Chylothorax is an extremely rare but potentially life-threatening complication after radical neck dissection. We report the case of a bilateral chylothorax after total thyroidectomy and cervico-central and cervico-lateral lymphadenectomy for thyroid carcinoma. CASE PRESENTATION A 40-year-old European woman underwent total thyroidectomy and neck dissection for papillary thyroid carcinoma. Postoperatively she developed dyspnoea and pleural effusion. A chylothorax was found and the initial conservative therapy was not successful. She had to be operated on again and the thoracic duct was legated. CONCLUSION The case presentation reports a very rare complication after total thyroidectomy and neck dissection, but it has to be kept in mind to prevent dangerous complications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.