966 resultados para Dopamine receptor antagonist


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Striatal adenosine A2A receptors (A2ARs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D2 receptors (D2Rs). A2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A1 receptors (A1Rs). It has been hypothesized that postsynaptic A2AR antagonists should be useful in Parkinson's disease, while presynaptic A2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A2AR-D2R and A1R-A2AR heteromers to determine possible differences in the affinity of these compounds for different A2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A2AR when co-expressed with D2R than with A1R. KW-6002 showed the best relative affinity for A2AR co-expressed with D2R than co-expressed with A1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential pre- versus postsynaptic actions, SCH-442416 and KW-6002 may be used as lead compounds to obtain more effective antidyskinetic and antiparkinsonian compounds, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gonadal somatic cell and adrenocortical endocrine tumors are rare. The incidence of adrenocortical carcinomas is only 1-2/1000000 a year. However, they are aggressive, especially in adulthood and currently surgery is the only curative treatment. Cytotoxic agents are in use in advanced cancers, but side effects and multidrug resistance are often problems. Thus there is a need for novel curative treatment methods. In contrast, ovarian granulosa cell tumors and testicular Leydig cell tumors are usually benign, especially at a younger age. The aim of the present thesis was to study a novel targeted treatment method through luteinizing hormone/chorionic gonadotropin receptor (LHCGR) in a transgenic mouse tumor model. The cytotoxic agent was lytic peptide Hecate-CGbeta conjugate where 23 amino acid Hecate, a synthetic form of honeybee venom melittin, was conjugated to 15 amino acid fragment of human chorionic gonadotropin β subunit. Lytic peptides are known to act only on negatively charged cells, such as bacteria and cancer cells and hereby, due to hCGbeta fragment, the conjugate is able to bind directly to LHCGR bearing cancer cells, saving the healthy ones. The experiments were carried out in inhibin-alpha-Simian Virus 40-T-antigen transgenic mice that are known to express LHCGR-bearing gonadal tumors, namely Leydig and granulosa cell tumors by 100% penetrance. If the mice are gonadectomized prepubertally they form adrenocortical tumors instead. Transgenic and wild type mice were treated for three consecutive weeks with control vehicle, Hecate or Hecate-CGbeta conjugate. GnRH antagonist or estradiol was given to a group of mice with or without Hecate-CGbeta conjugate to analyze the additive role of gonadotropin blockage in adrenocortical tumor treatment efficacy. Hecate-CGbeta conjugate was able to diminish the gonadal and adrenal tumor size effectively in males. No treatment related side effects were found. Gonadotropin blockage through GnRH antagonist was the best treatment in female adrenal tumors. The mode of cell death by Hecate-CGbeta conjugate was proven to be through necrosis. LHCGR and GATA-4 were co-expressed in tumors, where the treatment down-regulated their expression simultaneously, suggesting their possible use as tumor markers. In conclusion, the present thesis showed that Hecate-CGbeta conjugate targets its action selectively through LHCGR and selectively kills the LHCGR bearing tumor cells. It works both in gonadal somatic and in ectopic LHCGR bearing adrenal tumors. These results establish a more general principle that receptors expressed ectopically in malignant cells can be exploited in targeted cytotoxic therapies without affecting the normal healthy cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of dopamine and serotonin in spinal pain regulation is well established. However, little is known concerning the role of brain dopamine and serotonin in the perception of pain in humans. The aim of this study was to assess the potential role of brain dopamine and serotonin in determining experimental pain sensitivity in humans using positron emission tomography (PET) and psychophysical methods. A total of 39 healthy subjects participated in the study, and PET imaging was performed to assess brain dopamine D2/D3 and serotonin 5-HT1A receptor availability. In a separate session, sensitivity to pain and touch was assessed with traditional psychophysical methods, allowing the evaluation of potential associations between D2/D3 and 5-HT1A binding and psychophysical responses. The subjects’ responses were also analyzed according to Signal Detection Theory, which enables separate assessment of the subject’s discriminative capacity (sensory factor) and response criterion (non-sensory factor). The study found that the D2/D3 receptor binding in the right putamen was inversely correlated with pain threshold and response criterion. 5-HT1A binding in cingulate cortex, inferior temporal gyrus and medial prefrontal cortex was inversely correlated with discriminative capacity for touch. Additionally, the response criterion for pain and intensity rating of suprathreshold pain were inversely correlated with 5-HT1A binding in multiple brain areas. The results suggest that brain D2/D3 receptors and 5-HT1A receptors modulate sensitivity to pain and that the pain modulatory effects may, at least partly, be attributed to influences on the response criterion. 5-HT1A receptors are also involved in the regulation of touch by having an effect on discriminative capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The involvement of GABA-A receptors in the control of nociception was studied using the tail-flick test in rats. Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg), pentobarbital (17-33 mg/kg), and thiopental (7.5-30 mg/kg), of the benzodiazepine midazolam (10 mg/kg) or of ethanol (0.4-1.6 g/kg) administered by the systemic route reduced the latency for the tail-flick response, thus inducing a 'hyperalgesic' state in the animals. In contrast, non-convulsant doses of the GABA-A antagonist picrotoxin (0.12-1.0 mg/kg) administered systemically induced an increase in the latency for the tail-flick response, therefore characterizing an 'antinociceptive' state. Previous picrotoxin (0.12 mg/kg) treatment abolished the hyperalgesic state induced by effective doses of the barbiturates, midazolam or ethanol. Since phenobarbital, midazolam and ethanol reproduced the described hyperalgesic effect of GABA-A-specific agonists (muscimol, THIP), which is specifically antagonized by the GABA-A antagonist picrotoxin, our results suggest that GABA-A receptors are tonically involved in the modulation of nociception in the rat central nervous system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Training in step-down inhibitory avoidance (0.3-mA footshock) is followed by biochemical changes in rat hippocampus that strongly suggest an involvement of quantitative changes in glutamate AMPA receptors, followed by changes in the dopamine D1 receptor/cAMP/protein kinase A (PKA)/CREB-P signalling pathway in memory consolidation. AMPA binding to its receptor and levels of the AMPA receptor-specific subunit GluR1 increase in the hippocampus within the first 3 h after training (20-70%). Binding of the specific D1 receptor ligand, SCH23390, and cAMP levels increase within 3 or 6 h after training (30-100%). PKA activity and CREB-P levels show two peaks: a 35-40% increase 0 h after training, and a second increase 3-6 h later (35-60%). The results correlate with pharmacological findings showing an early post-training involvement of AMPA receptors, and a late involvement of the D1/cAMP/PKA/CREB-P pathway in memory consolidation of this task

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diethylpropion (DEP) is an amphetamine-like agent used as an anorectic drug. Abuse of DEP has been reported and some restrictions of its use have been recently imposed. The conditioning place preference (CPP) paradigm was used to evaluate the reinforcing properties of DEP in adult male Wistar rats. After initial preferences were determined, animals weighing 250-300 g (N = 7 per group) were conditioned with DEP (10, 15 or 20 mg/kg). Only the dose of 15 mg/kg produced a significant place preference (358 ± 39 vs 565 ± 48 s). Pretreatment with the D1 antagonist SCH 23390 (0.05 mg/kg, sc) 10 min before DEP (15 mg/kg, ip) blocked DEP-induced CPP (418 ± 37 vs 389 ± 31 s) while haloperidol (0.5 mg/kg, ip), a D2 antagonist, 15 min before DEP was ineffective in modifying place conditioning produced by DEP (385 ± 36 vs 536 ± 41 s). These results suggest that dopamine D1 receptors mediate the reinforcing effect of DEP

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The widespread consumption of anorectics and combined anorectic + alcohol misuse are problems in Brazil. In order to better understand the interactive effects of ethanol (EtOH) and diethylpropion (DEP) we examined the locomotion-activating effects of these drugs given alone or in combination in mice. We also determined whether this response was affected by dopamine (DA) or opioid receptor antagonists. A total of 160 male Swiss mice weighing approximately 30 g were divided into groups of 8 animals per group. The animals were treated daily for 7 consecutive days with combined EtOH + DEP (1.2 g/kg and 5.0 mg/kg, ip), EtOH (1.2 g/kg, ip), DEP (5.0 mg/kg, ip) or the control solution coadministered with the DA antagonist haloperidol (HAL, 0.075 mg/kg, ip), the opioid antagonist naloxone (NAL, 1.0 mg/kg, ip), or vehicle. On days 1, 7 and 10 after the injections, mice were assessed in activity cages at different times (15, 30, 45 and 60 min) for 5 min. The acute combination of EtOH plus DEP induced a significantly higher increase in locomotor activity (day 1: 369.5 ± 34.41) when compared to either drug alone (day 1: EtOH = 232.5 ± 23.79 and DEP = 276.0 ± 12.85) and to control solution (day 1: 153.12 ± 7.64). However, the repeated administration of EtOH (day 7: 314.63 ± 26.79 and day 10: 257.62 ± 29.91) or DEP (day 7: 309.5 ± 31.65 and day 10: 321.12 ± 39.24) alone or in combination (day 7: 459.75 ± 41.28 and day 10: 427.87 ± 33.0) failed to induce a progressive increase in the locomotor response. These data demonstrate greater locomotion-activating effects of the EtOH + DEP combination, probably involving DA and/or opioid receptor stimulation, since the daily pretreatment with HAL (day 1: EtOH + DEP = 395.62 ± 11.92 and EtOH + DEP + HAL = 371.5 ± 6.76; day 7: EtOH + DEP = 502.5 ± 42.27 and EtOH + DEP + HAL = 281.12 ± 16.08; day 10: EtOH + DEP = 445.75 ± 16.64 and EtOH + DEP + HAL = 376.75 ± 16.4) and NAL (day 1: EtOH + DEP = 553.62 ± 38.15 and EtOH + DEP + NAL = 445.12 ± 55.67; day 7: EtOH + DEP = 617.5 ± 38.89 and EtOH + DEP + NAL = 418.25 ± 61.18; day 10: EtOH + DEP = 541.37 ± 32.86 and EtOH + DEP + NAL = 427.12 ± 51.6) reduced the locomotor response induced by combined administration of EtOH + DEP. These findings also suggest that a major determinant of combined anorectic-alcohol misuse may be the increased stimulating effects produced by the combination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effects of adenosine on prolactin (PRL) secretion from rat anterior pituitaries incubated in vitro. The administration of 5-N-methylcarboxamidoadenosine (MECA), an analog agonist that preferentially activates A2 receptors, induced a dose-dependent (1 nM to 1 µM) increase in the levels of PRL released, an effect abolished by 1,3-dipropyl-7-methylxanthine, an antagonist of A2 adenosine receptors. In addition, the basal levels of PRL secretion were decreased by the blockade of cyclooxygenase or lipoxygenase pathways, with indomethacin and nordihydroguaiaretic acid (NDGA), respectively. The stimulatory effects of MECA on PRL secretion persisted even after the addition of indomethacin, but not of NDGA, to the medium. MECA was unable to stimulate PRL secretion in the presence of dopamine, the strongest inhibitor of PRL release that works by inducing a decrease in adenylyl cyclase activity. Furthermore, the addition of adenosine (10 nM) mimicked the effects of MECA on PRL secretion, an effect that persisted regardless of the presence of LiCl (5 mM). The basal secretion of PRL was significatively reduced by LiCl, and restored by the concomitant addition of both LiCl and myo-inositol. These results indicate that PRL secretion is under a multifactorial regulatory mechanism, with the participation of different enzymes, including adenylyl cyclase, inositol-1-phosphatase, cyclooxygenase, and lipoxygenase. However, the increase in PRL secretion observed in the lactotroph in response to A2 adenosine receptor activation probably was mediated by mechanisms involving regulation of adenylyl cyclase, independent of membrane phosphoinositide synthesis or cyclooxygenase activity and partially dependent on lipoxygenase arachidonic acid-derived substances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO) depend on the integrity of the rostral ventrolateral medulla (RVLM). Therefore, to test the participation of excitatory amino acid (EAA) receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s), the EAA antagonist kynurenic acid (Kyn) was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl) of male Wistar rats (270-320 g, N = 39) and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01), bradycardia (deltaHR = -30 ± 7 bpm, P<0.01) and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7). Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6). Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7). These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent evidence suggests that insulin may influence many brain functions. It is known that intracerebroventricular (icv) injection of nondiabetogenic doses of streptozotocin (STZ) can damage insulin receptor signal transduction. In the present study, we examined the functional damage to the brain insulin receptors on central mechanisms regulating glomerular filtration rate and urinary sodium excretion, over four periods of 30 min, in response to 3 µl insulin or 0.15 NaCl (vehicle) injected icv in STZ-treated freely moving Wistar-Hannover rats (250-300 g). The icv cannula site was visually confirmed by 2% Evans blue infusion. Centrally administered insulin (42.0 ng/µl) increased the urinary output of sodium (from 855.6 ± 85.1 to 2055 ± 310.6 delta%/min; N = 11) and potassium (from 460.4 ± 100 to 669 ± 60.8 delta%/min; N = 11). The urinary sodium excretion response to icv insulin microinjection was markedly attenuated by previous central STZ (100 µg/3 µl) administration (from 628 ± 45.8 to 617 ± 87.6 delta%/min; N = 5) or by icv injection of a dopamine antagonist, haloperidol (4 µg/3 µl) (from 498 ± 39.4 to 517 ± 73.2 delta%/min; N = 5). Additionally, insulin-induced natriuresis occurred by increased post-proximal tubule sodium rejection, despite an unchanged glomerular filtration rate. Excluding the possibility of a direct action of STZ on central insulin receptor-carrying neurons, the current data suggest that the insulin-sensitive response may be processed through dopaminergic D1 receptors containing neuronal pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to characterize the interactions of antagonist G (H-Arg-D-Trp-NmePhe-D-Trp-Leu-Met-NH 2)-targeted sterically stabilized liposomes with the human variant small cell lung cancer (SCLC) H82 cell line and to evaluate the antiproliferative activity of encapsulated doxorubicin against this cell line. Variant SCLC tumors are known to be more resistant to chemotherapy than classic SCLC tumors. The cellular association of antagonist G-targeted (radiolabeled) liposomes was 20-30-fold higher than that of non-targeted liposomes. Our data suggest that a maximum of 12,000 antagonist G-targeted liposomes were internalized/cell during 1-h incubation at 37ºC. Confocal microscopy experiments using pyranine-containing liposomes further confirmed that receptor-mediated endocytosis occurred, specifically in the case of targeted liposomes. In any of the previously mentioned experiments, the binding and endocytosis of non-targeted liposomes have revealed to be negligible. The improved cellular association of antagonist G-targeted liposomes, relative to non-targeted liposomes, resulted in an enhanced nuclear delivery (evaluated by fluorimetry) and cytotoxicity of encapsulated doxorubicin for incubation periods as short as 2 h. For an incubation of 2 h, we report IC50 values for targeted and non-targeted liposomes containing doxorubicin of 5.7 ± 3.7 and higher than 200 µM doxorubicin, respectively. Based on the present data, we may infer that receptors for antagonist G were present in H82 tumor cells and could mediate the internalization of antagonist G-targeted liposomes and the intracellular delivery of their content. Antagonist G covalently coupled to liposomal drugs may be promising for the treatment of this aggressive and highly heterogeneous disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effects of histamine H1 or H2 receptor antagonists on emotional memory consolidation in mice submitted to the elevated plus maze (EPM). The cerebellar vermis of male mice (Swiss albino) was implanted using a cannula guide. Three days after recovery, behavioral tests were performed in the EPM on 2 consecutive days (T1 and T2). Immediately after exposure to the EPM (T1), animals received a microinjection of saline (SAL) or the H1 antagonist chlorpheniramine (CPA; 0.016, 0.052, or 0.16 nmol/0.1 µL) in Experiment 1, and SAL or the H2 antagonist ranitidine (RA; 0.57, 2.85, or 5.7 nmol/0.1 µL) in Experiment 2. Twenty-four hours later, mice were reexposed to the EPM (T2) under the same experimental conditions but they did not receive any injection. Data were analyzed using one-way ANOVA and the Duncan test. In Experiment 1, mice microinjected with SAL and with CPA entered the open arms less often (%OAE) and spent less time in the open arms (%OAT) in T2, and there was no difference among groups. The results of Experiment 2 demonstrated that the values of %OAE and %OAT in T2 were lower compared to T1 for the groups that were microinjected with SAL and 2.85 nmol/0.1 µL RA. However, when animals were microinjected with 5.7 nmol/0.1 µL RA, they did not show a reduction in %OAE and %OAT. These results demonstrate that CPA did not affect behavior at the doses used in this study, while 5.7 nmol/0.1 µL RA induced impairment of memory consolidation in the EPM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human striatum is a heterogeneous structure representing a major part of the dopamine (DA) system’s basal ganglia input and output. Positron emission tomography (PET) is a powerful tool for imaging DA neurotransmission. However, PET measurements suffer from bias caused by the low spatial resolution, especially when imaging small, D2/3 -rich structures such as the ventral striatum (VST). The brain dedicated high-resolution PET scanner, ECAT HRRT (Siemens Medical Solutions, Knoxville, TN, USA) has superior resolution capabilities than its predecessors. In the quantification of striatal D2/3 binding, the in vivo highly selective D2/3 antagonist [11C] raclopride is recognized as a well-validated tracer. The aim of this thesis was to use a traditional test-retest setting to evaluate the feasibility of utilizing the HRRT scanner for exploring not only small brain regions such as the VST but also low density D2/3 areas such as cortex. It was demonstrated that the measurement of striatal D2/3 binding was very reliable, even when studying small brain structures or prolonging the scanning interval. Furthermore, the cortical test-retest parameters displayed good to moderate reproducibility. For the first time in vivo, it was revealed that there are significant divergent rostrocaudal gradients of [11C]raclopride binding in striatal subregions. These results indicate that high-resolution [11C]raclopride PET is very reliable and its improved sensitivity means that it should be possible to detect the often very subtle changes occurring in DA transmission. Another major advantage is the possibility to measure simultaneously striatal and cortical areas. The divergent gradients of D2/3 binding may have functional significance and the average distribution binding could serve as the basis for a future database. Key words: dopamine, PET, HRRT, [11C]raclopride, striatum, VST, gradients, test-retest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Positron emission tomography imaging has both academic and applied uses in revealing the distribution and density of different molecular targets in the central nervous system. Following the significant progress made with the dopamine D2 receptor, advances have been made in developing PET tracers to allow analysis of receptor occupancy of many other receptor types as well as evaluating changes in endogenous synaptic transmitter concentrations of transmitters e.g. serotonin and noradrenaline. Noradrenergic receptors are divided into α1-, α2- and β-adrenoceptor subfamilies, in humans each of which is composed of three receptor subtypes. The α2-adrenoceptors have an important presynaptic auto-inhibitory function on noradrenaline release but they also have postsynaptic roles in modulating the release of other neurotransmitters, such as serotonin and dopamine. One of the subtypes, the α2C-adrenoceptor, has been detected at distinct locations in the central nervous system, most notably the dorsal striatum. Several serious neurological conditions causing dementia, Alzheimer’s disease and Parkinson’s disease have been linked to disturbed noradrenergic signaling. Furthermore, altered noradrenergic signaling has also been implicated in conditions like ADHD, depression, anxiety and schizophrenia. In order to benefit future research into these central nervous system disorders as well as being useful in the clinical development of drugs affecting brain noradrenergic neurotransmission, validation work of a novel tracer for positron emission tomography studies in humans was performed. Altogether 85 PET imaging experiments were performed during four separate clinical trials. The repeatability of [11C]ORM-13070 binding was tested in healthy individuals, followed by a study to evaluate the dose-dependent displacement of [11C]ORM-13070 from α2C-adrenoceptors by a competing ligand, and the final two studies examined the sensitivity of [11C]ORM-13070 binding to reflect changes in endogenous noradrenaline levels. The repeatability of [11C]ORM-13070 binding was very high. The binding properties of the tracer allowed for a reliable estimation of α2C-AR occupancy by using the reference tissue ratio method with low test-retest variability. [11C]ORM-13070 was dose-dependently displaced from its specific binding sites by the subtype-nonselective α2-adrenoceptor antagonist atipamezole, and thus it proved suitable for use in clinical drug development of novel α2C-adrenoceptor ligands e.g. to determine the best doses and dosing intervals for clinical trials. Convincing experimental evidence was gained to support the suitability of [11C]ORM-13070 for detecting an increase in endogenous synaptic noradrenaline in the human brain. Tracer binding in the thalamus tended to increase in accordance with reduced activity of noradrenergic projections from the locus coeruleus, although statistical significance was not reached. Thus, the investigation was unable to fully validate [11C]ORM-13070 for the detection of pharmacologically evoked reductions in noradrenaline levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims at studing the role of tachykinin NK-3 receptor (R) and kinin B1R in central autonomic regulation of blood pressure (BP) and to determine whether the B1R is overexpressed and functional in rat models of hypertension by measuring the effect of a B1R agonist on behavioural activity. Assumptions: (1) NK-3R located in the ventral tegmental area (VTA) modulates the mesolimbic dopaminergic system and has a tonic activity in hypertension; (2) B1R is overexpressed in the brain of hypertensive rats and has a tonic activity, which contributes to hypertension via a dopamine mechanism; (3) the inhibition of NK-3R and B1R with selective antagonists, reduces central dopaminergic hyperactivity and reverses hypertension. A model of genetic hypertension and a model of experimental hypertension were used: spontaneously hypertensive rats (SHR, 16 weeks) and Wistar-Kyoto (WKY) rats infused for 14 days with angiotensin II (Ang II) (200 ng / kg / min, subcutaneous (s.c.) with Alzet mini pump). The age-matched untreated WKY rats served as common controls. In the first study (article # 1), the cardiovascular response in SHR was evaluated following intracebroventricular (i.c.v.) and/or intra-VTA injection of an agonist (senktide) and antagonists (SB222200 and R-820) of NK-3R. These responses have also been characterized using selective dopamine antagonists DA-D1R (SCH23390), DA-D2R (raclopride) or non-selective dopamine DA-D2R (haloperidol). Also the VTA has been destroyed by ibotenic acid. The pressor response induced by senktide and the anti-hypertensive response induced by SB222200 or R-820 were more pronounced by intra-VTA. These responses were prevented by pre-treatment with raclopride and haloperidol. The lesion of the VTA has prevented the pressor response relayed by senktide (i.c.v.) and the anti-hypertensive effect of R-820 (i.c.v.). In addition, SB222200 (intra-VTA) prevented the pressor response of senktide (i.c.v.) and conversely, senktide (i.c.v.) prevented the antihypertensive effect of SB222200 (intra-VTA). The second study (article # 2) showed that the B1R antagonist (SSR240612) administered by gavage or i.c.v. reverses hypertension in both models. This anti-hypertensive effect was prevented by raclopride and haloperidol. In contrast, the two B1R antagonists (R-715 and R-954) injected s.c., which do not cross the blood-brain barrier reduced weakly blood pressure in hypertensive rats. In the third study (article # 3), the i.c.v. injection of a selective kinin B1R agonist Sar[DPhe8][des-Arg9]BK caused behavioural responses in SHR and Ang II-treated rats and had no effect in control WKY rats . The responses elicited by B1R agonist were blocked by an antagonist of NK-1 (RP67580), an antagonist of NMDA glutamate receptor (DL-AP5), an inhibitor of nitric oxide synthase (NOS) (L -NNA) as well as raclopride and SCH23390.The responses were modestly affected by the inhibitor of inducible NOS (iNOS). The B1R mRNA (measured by RT-PCR) was significantly increased in the hypothalamus, the VTA and the nucleus accumbens of hypertensive animals (SHR and treated with Ang II) compared with control rats. These neuropharmacological studies suggest that: (1) the NK-3R from the VTA is involved in the maintenance of hypertension in SHR by increasing DA transmission in the midbrain; (2) the B1R in SHR and Ang II-treated rats contributes to hypertension via a central mechanism involving DA-D2R; (3) the central B1R increases locomotor activity and nocifensive behaviours via the release of substance P (NK-1), DA and nitric oxide in both rat models of hypertension. Thus, the brain tachykinin NK-3R and kinin B1R represent potential therapeutic targets for the treatment of hypertension. The modulation of the mesolimbic/mesocortical dopaminergic pathway by these receptors suggests their involvement in other physiological functions (pleasure, motor activity, coordination of the response to stress) and pathophysiology (anxiety, depression).