995 resultados para Domain Ontologies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining goal-oriented and use case modeling has been proven to be an effective method in requirements elicitation and elaboration. However, current requirements engineering approaches generally lack reliable support for automated analysis of such modeled artifacts. To address this problem, we have developed GUITAR, a tool which delivers automated detection of incorrectness, incompleteness and inconsistency between artifacts. GUITAR is based on our goal-use case integration meta-model and ontologies of domain knowledge and semantics. GUITAR also provides comprehensive explanations for detected problems and can suggest resolution alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective behind building domain-specific visual languages (DSVLs) is to provide users with the most appropriate concepts and notations that best fit with their domain and experience. However, the existing DSVL designers do not support integrating environment and user context information when modeling, editing or viewing DSVL models at different locations, permissions, devices, etc. In this paper, we introduce HorusCML, a context-aware DSVL designer, which supports DSVL experts in integrating necessary context details within their DSVLs. The resultant DSVLs can reflect different facets, layouts, and behaviours according to context it is used in. We show a case study on developing a context-aware data flow diagram DSVL tool using HorusCML.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterprise security management requires capturing different security and IT systems' details, analyzing and enforcing these security details, and improving employed security to meet new risks. Adopting structured models greatly helps in simplifying and organizing security specification and enforcement processes. However, existing security models are generally limited to specific security details and do not deliver a comprehensive security model. They also often do not have user-friendly notations, being complicated extensions of existing modeling languages (such as UML). In this paper, we introduce a comprehensive Security Domain Specific Visual Language (SecDSVL), which enables capturing of key security details to support enterprise systems security management process. We discuss our SecDSVL, tool support and the model-based enterprise security management approach it supports, give a usage example, and present evaluation experiments of SecDSVL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Domain-specific visual languages support high-level modeling for a wide range of application domains. However, building tools to support such languages is very challenging. We describe a set of key conceptual requirements for such tools and our approach to addressing these requirements, a set of visual language-based metatools. These support definition of metamodels, visual notations, views, modeling behaviors, design critics, and model transformations and provide a platform to realize target visual modeling tools. Extensions support collaborative work, human-centric tool interaction, and multiplatform deployment. We illustrate application of the metatoolset on tools developed with our approach. We describe tool developer and cognitive evaluations of our platform and our exemplar tools, and summarize key future research directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interoperability of water quality data depends on the use of common models, schemas and vocabularies. However, terms are usually collected during different activities and projects in isolation of one another, resulting in vocabularies that have the same scope being represented with different terms, using different formats and formalisms, and published in various access methods. Significantly, most water quality vocabularies conflate multiple concepts in a single term, e.g. quantity kind, units of measure, substance or taxon, medium and procedure. This bundles information associated with separate elements from the OGC Observations and Measurements (O&M) model into a single slot. We have developed a water quality vocabulary, formalized using RDF, and published as Linked Data. The terms were extracted from existing water quality vocabularies. The observable property model is inspired by O&M but aligned with existing ontologies. The core is an OWL ontology that extends the QUDT ontology for Unit and QuantityKind definitions. We add classes to generalize the QuantityKind model, and properties for explicit description of the conflated concepts. The key elements are defined to be sub-classes or sub-properties of SKOS elements, which enables a SKOS view to be published through standard vocabulary APIs, alongside the full view. QUDT terms are re-used where possible, supplemented with additional Unit and QuantityKind entries required for water quality. Along with items from separate vocabularies developed for objects, media, and procedures, these are linked into definitions in the actual observable property vocabulary. Definitions of objects related to chemical substances are linked to items from the Chemical Entities of Biological Interest (ChEBI) ontology. Mappings to other vocabularies, such as DBPedia, are in separately maintained files. By formalizing the model for observable properties, and clearly labelling the separate concerns, water quality observations from different sources may be more easily merged and also transformed to O&M for cross-domain applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observational data encodes values of properties associated with a feature of interest, estimated by a specified procedure. For water the properties are physical parameters like level, volume, flow and pressure, and concentrations and counts of chemicals, substances and organisms. Water property vocabularies have been assembled at project, agency and jurisdictional level. Organizations such as EPA, USGS, CEH, GA and BoM maintain vocabularies for internal use, and may make them available externally as text files. BODC and MMI have harvested many water vocabularies alongside others of interest in their domain, formalized the content using SKOS, and published them through web interfaces. Scope is highly variable both within and between vocabularies. Individual items may conflate multiple concerns (e.g. property, instrument, statistical procedure, units). There is significant duplication between vocabularies. Semantic web technologies provide the opportunity both to publish vocabularies more effectively, and achieve harmonization to support greater interoperability between datasets. - Models for vocabulary items (property, substance/taxon, process, unit-of-measure, etc) may be formalized OWL ontologies, supporting semantic relations between items in related vocabularies; - By specializing the ontology elements from SKOS concepts and properties, diverse vocabularies may be published through a common interface; - Properties from standard vocabularies (e.g. OWL, SKOS, PROV-O and VAEM) support mappings between vocabularies having a similar scope - Existing items from various sources may be assembled into new virtual vocabularies However, there are a number of challenges: - use of standard properties such as sameAs/exactMatch/equivalentClass require reasoning support; - items have been conceptualised as both classes and individuals, complicating the mapping mechanics; - re-use of items across vocabularies may conflict with expectations concerning URI patterns; - versioning complicates cross-references and re-use. This presentation will discuss ways to harness semantic web technologies to publish harmonized vocabularies, and will summarise how many of the challenges may be addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a boundary element formulation to analyse plates reinforced by rectangular beams, with columns defined in the domain is proposed. The model is based on Kirchhoff hypothesis and the beams are not required to be displayed over the plate surface, therefore eccentricity effects are taken into account. The presented boundary element method formulation is derived by applying the reciprocity theorem to zoned plates, where beams are treated as thin sub-regions with larger rigidities. The integral representations derived for this complex structural element consider the bending and stretching effects of both structural elements working together. The standard equilibrium and compatibility conditions along interface are naturally imposed, being the bending tractions eliminated along interfaces. The in-plane tractions and the bending and in-plane displacements are approximated along the beam width, reducing the number of degrees of freedom. The columns are introduced into the formulation by considering domain points where tractions can be prescribed. Some examples are then shown to illustrate the accuracy of the formulation, comparing the obtained results with other numerical solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researches in Requirements Engineering have been growing in the latest few years. Researchers are concerned with a set of open issues such as: communication between several user profiles involved in software engineering; scope definition; volatility and traceability issues. To cope with these issues a set of works are concentrated in (i) defining processes to collect client s specifications in order to solve scope issues; (ii) defining models to represent requirements to address communication and traceability issues; and (iii) working on mechanisms and processes to be applied to requirements modeling in order to facilitate requirements evolution and maintenance, addressing volatility and traceability issues. We propose an iterative Model-Driven process to solve these issues, based on a double layered CIM to communicate requirements related knowledge to a wider amount of stakeholders. We also present a tool to help requirements engineer through the RE process. Finally we present a case study to illustrate the process and tool s benefits and usage

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geographic Information System (GIS) are computational tools used to capture, store, consult, manipulate, analyze and print geo-referenced data. A GIS is a multi-disciplinary system that can be used by different communities of users, each one having their own interest and knowledge. This way, different knowledge views about the same reality need to be combined, in such way to attend each community. This work presents a mechanism that allows different community users access the same geographic database without knowing its particular internal structure. We use geographic ontologies to support a common and shared understanding of a specific domain: the coral reefs. Using these ontologies' descriptions that represent the knowledge of the different communities, mechanisms are created to handle with such different concepts. We use equivalent classes mapping, and a semantic layer that interacts with the ontologies and the geographic database, and that gives to the user the answers about his/her queries, independently of the used terms