960 resultados para Discrete Data Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because self-reported health status [SRHS] is an ordered response variable, inequality measurement for SRHS data requires a numerical scale for converting individual responses into a summary statistic. The choice of scale is however problematic, since small variations in the numerical scale may reverse the ordering of a given pair of distributions of SRHS data in relation to conventional inequality indices such as the variance. This paper introduces a parametric family of inequality indices, founded on an inequality ordering proposed by Allison and Foster [Allison, R.A., Foster, J., 2004. Measuring health inequalities using qualitative data. Journal of Health Economics 23, 505-524], which satisfy a suitable invariance property with respect to the choice of numerical scale. Several key members of the parametric family are also derived, and an empirical application using data from the Swiss Health Survey illustrates the proposed methodology. [Authors]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Risk maps summarizing landscape suitability of novel areas for invading species can be valuable tools for preventing species' invasions or controlling their spread, but methods employed for development of such maps remain variable and unstandardized. We discuss several considerations in development of such models, including types of distributional information that should be used, the nature of explanatory variables that should be incorporated, and caveats regarding model testing and evaluation. We highlight that, in the case of invasive species, such distributional predictions should aim to derive the best hypothesis of the potential distribution of the species by using (1) all distributional information available, including information from both the native range and other invaded regions; (2) predictors linked as directly as is feasible to the physiological requirements of the species; and (3) modelling procedures that carefully avoid overfitting to the training data. Finally, model testing and evaluation should focus on well-predicted presences, and less on efficient prediction of absences; a k-fold regional cross-validation test is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

US Geological Survey (USGS) based elevation data are the most commonly used data source for highway hydraulic analysis; however, due to the vertical accuracy of USGS-based elevation data, USGS data may be too “coarse” to adequately describe surface profiles of watershed areas or drainage patterns. Additionally hydraulic design requires delineation of much smaller drainage areas (watersheds) than other hydrologic applications, such as environmental, ecological, and water resource management. This research study investigated whether higher resolution LIDAR based surface models would provide better delineation of watersheds and drainage patterns as compared to surface models created from standard USGS-based elevation data. Differences in runoff values were the metric used to compare the data sets. The two data sets were compared for a pilot study area along the Iowa 1 corridor between Iowa City and Mount Vernon. Given the limited breadth of the analysis corridor, areas of particular emphasis were the location of drainage area boundaries and flow patterns parallel to and intersecting the road cross section. Traditional highway hydrology does not appear to be significantly impacted, or benefited, by the increased terrain detail that LIDAR provided for the study area. In fact, hydrologic outputs, such as streams and watersheds, may be too sensitive to the increased horizontal resolution and/or errors in the data set. However, a true comparison of LIDAR and USGS-based data sets of equal size and encompassing entire drainage areas could not be performed in this study. Differences may also result in areas with much steeper slopes or significant changes in terrain. LIDAR may provide possibly valuable detail in areas of modified terrain, such as roads. Better representations of channel and terrain detail in the vicinity of the roadway may be useful in modeling problem drainage areas and evaluating structural surety during and after significant storm events. Furthermore, LIDAR may be used to verify the intended/expected drainage patterns at newly constructed highways. LIDAR will likely provide the greatest benefit for highway projects in flood plains and areas with relatively flat terrain where slight changes in terrain may have a significant impact on drainage patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many transportation agencies maintain grade as an attribute in roadway inventory databases; however, the information is often in an aggregated format. Cross slope is rarely included in large roadway inventories. Accurate methods available to collect grade and cross slope include global positioning systems, traditional surveying, and mobile mapping systems. However, most agencies do not have the resources to utilize these methods to collect grade and cross slope on a large scale. This report discusses the use of LIDAR to extract roadway grade and cross slope for large-scale inventories. Current data collection methods and their advantages and disadvantages are discussed. A pilot study to extract grade and cross slope from a LIDAR data set, including methodology, results, and conclusions, is presented. This report describes the regression methodology used to extract and evaluate the accuracy of grade and cross slope from three dimensional surfaces created from LIDAR data. The use of LIDAR data to extract grade and cross slope on tangent highway segments was evaluated and compared against grade and cross slope collected using an automatic level for 10 test segments along Iowa Highway 1. Grade and cross slope were measured from a surface model created from LIDAR data points collected for the study area. While grade could be estimated to within 1%, study results indicate that cross slope cannot practically be estimated using a LIDAR derived surface model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: The expansion of a recovering population - whether re-introduced or spontaneously returning - is shaped by (i) biological (intrinsic) factors such as the land tenure system or dispersal, (ii) the distribution and availability of resources (e.g. prey), (iii) habitat and landscape features, and (iv) human attitudes and activities. In order to develop efficient conservation and recovery strategies, we need to understand all these factors and to predict the potential distribution and explore ways to reach it. An increased number of lynx in the north-western Swiss Alps in the nineties lead to a new controversy about the return of this cat. When the large carnivores were given legal protection in many European countries, most organizations and individuals promoting their protection did not foresee the consequences. Management plans describing how to handle conflicts with large predators are needed to find a balance between "overabundance" and extinction. Wildlife and conservation biologists need to evaluate the various threats confronting populations so that adequate management decisions can be taken. I developed a GIS probability model for the lynx, based on habitat information and radio-telemetry data from the Swiss Jura Mountains, in order to predict the potential distribution of the lynx in this mountain range, which is presently only partly occupied by lynx. Three of the 18 variables tested for each square kilometre describing land use, vegetation, and topography, qualified to predict the probability of lynx presence. The resulting map was evaluated with data from dispersing subadult lynx. Young lynx that were not able to establish home ranges in what was identified as good lynx habitat did not survive their first year of independence, whereas the only one that died in good lynx habitat was illegally killed. Radio-telemetry fixes are often used as input data to calibrate habitat models. Radio-telemetry is the only way to gather accurate and unbiased data on habitat use of elusive larger terrestrial mammals. However, it is time consuming and expensive, and can therefore only be applied in limited areas. Habitat models extrapolated over large areas can in turn be problematic, as habitat characteristics and availability may change from one area to the other. I analysed the predictive power of Ecological Niche Factor Analysis (ENFA) in Switzerland with the lynx as focal species. According to my results, the optimal sampling strategy to predict species distribution in an Alpine area lacking available data would be to pool presence cells from contrasted regions (Jura Mountains, Alps), whereas in regions with a low ecological variance (Jura Mountains), only local presence cells should be used for the calibration of the model. Dispersal influences the dynamics and persistence of populations, the distribution and abundance of species, and gives the communities and ecosystems their characteristic texture in space and time. Between 1988 and 2001, the spatio-temporal behaviour of subadult Eurasian lynx in two re-introduced populations in Switzerland was studied, based on 39 juvenile lynx of which 24 were radio-tagged to understand the factors influencing dispersal. Subadults become independent from their mothers at the age of 8-11 months. No sex bias neither in the dispersal rate nor in the distance moved was detected. Lynx are conservative dispersers, compared to bear and wolf, and settled within or close to known lynx occurrences. Dispersal distances reached in the high lynx density population - shorter than those reported in other Eurasian lynx studies - are limited by habitat restriction hindering connections with neighbouring metapopulations. I postulated that high lynx density would lead to an expansion of the population and validated my predictions with data from the north-western Swiss Alps where about 1995 a strong increase in lynx abundance took place. The general hypothesis that high population density will foster the expansion of the population was not confirmed. This has consequences for the re-introduction and recovery of carnivores in a fragmented landscape. To establish a strong source population in one place might not be an optimal strategy. Rather, population nuclei should be founded in several neighbouring patches. Exchange between established neighbouring subpopulations will later on take place, as adult lynx show a higher propensity to cross barriers than subadults. To estimate the potential population size of the lynx in the Jura Mountains and to assess possible corridors between this population and adjacent areas, I adapted a habitat probability model for lynx distribution in the Jura Mountains with new environmental data and extrapolated it over the entire mountain range. The model predicts a breeding population ranging from 74-101 individuals and from 51-79 individuals when continuous habitat patches < 50 km2 are disregarded. The Jura Mountains could once be part of a metapopulation, as potential corridors exist to the adjoining areas (Alps, Vosges Mountains, and Black Forest). Monitoring of the population size, spatial expansion, and the genetic surveillance in the Jura Mountains must be continued, as the status of the population is still critical. ENFA was used to predict the potential distribution of lynx in the Alps. The resulting model divided the Alps into 37 suitable habitat patches ranging from 50 to 18,711 km2, covering a total area of about 93,600 km2. When using the range of lynx densities found in field studies in Switzerland, the Alps could host a population of 961 to 1,827 residents. The results of the cost-distance analysis revealed that all patches were within the reach of dispersing lynx, as the connection costs were in the range of dispersal cost of radio-tagged subadult lynx moving through unfavorable habitat. Thus, the whole Alps could once be considered as a metapopulation. But experience suggests that only few disperser will cross unsuitable areas and barriers. This low migration rate may seldom allow the spontaneous foundation of new populations in unsettled areas. As an alternative to natural dispersal, artificial transfer of individuals across the barriers should be considered. Wildlife biologists can play a crucial role in developing adaptive management experiments to help managers learning by trial. The case of the lynx in Switzerland is a good example of a fruitful cooperation between wildlife biologists, managers, decision makers and politician in an adaptive management process. This cooperation resulted in a Lynx Management Plan which was implemented in 2000 and updated in 2004 to give the cantons directives on how to handle lynx-related problems. This plan was put into practice e.g. in regard to translocation of lynx into unsettled areas. Résumé: L'expansion d'une population en phase de recolonisation, qu'elle soit issue de réintroductions ou d'un retour naturel dépend 1) de facteurs biologiques tels que le système social et le mode de dispersion, 2) de la distribution et la disponibilité des ressources (proies), 3) de l'habitat et des éléments du paysage, 4) de l'acceptation de l'espèce par la population locale et des activités humaines. Afin de pouvoir développer des stratégies efficaces de conservation et de favoriser la recolonisation, chacun de ces facteurs doit être pris en compte. En plus, la distribution potentielle de l'espèce doit pouvoir être déterminée et enfin, toutes les possibilités pour atteindre les objectifs, examinées. La phase de haute densité que la population de lynx a connue dans les années nonante dans le nord-ouest des Alpes suisses a donné lieu à une controverse assez vive. La protection du lynx dans de nombreux pays européens, promue par différentes organisations, a entraîné des conséquences inattendues; ces dernières montrent que tout plan de gestion doit impérativement indiquer des pistes quant à la manière de gérer les conflits, tout en trouvant un équilibre entre l'extinction et la surabondance de l'espèce. Les biologistes de la conservation et de la faune sauvage doivent pour cela évaluer les différents risques encourus par les populations de lynx, afin de pouvoir rapidement prendre les meilleuresmdécisions de gestion. Un modèle d'habitat pour le lynx, basé sur des caractéristiques de l'habitat et des données radio télémétriques collectées dans la chaîne du Jura, a été élaboré afin de prédire la distribution potentielle dans cette région, qui n'est que partiellement occupée par l'espèce. Trois des 18 variables testées, décrivant pour chaque kilomètre carré l'utilisation du sol, la végétation ainsi que la topographie, ont été retenues pour déterminer la probabilité de présence du lynx. La carte qui en résulte a été comparée aux données télémétriques de lynx subadultes en phase de dispersion. Les jeunes qui n'ont pas pu établir leur domaine vital dans l'habitat favorable prédit par le modèle n'ont pas survécu leur première année d'indépendance alors que le seul individu qui est mort dans l'habitat favorable a été braconné. Les données radio-télémétriques sont souvent utilisées pour l'étalonnage de modèles d'habitat. C'est un des seuls moyens à disposition qui permette de récolter des données non biaisées et précises sur l'occupation de l'habitat par des mammifères terrestres aux moeurs discrètes. Mais ces méthodes de- mandent un important investissement en moyens financiers et en temps et peuvent, de ce fait, n'être appliquées qu'à des zones limitées. Les modèles d'habitat sont ainsi souvent extrapolés à de grandes surfaces malgré le risque d'imprécision, qui résulte des variations des caractéristiques et de la disponibilité de l'habitat d'une zone à l'autre. Le pouvoir de prédiction de l'Analyse Ecologique de la Niche (AEN) dans les zones où les données de présence n'ont pas été prises en compte dans le calibrage du modèle a été analysée dans le cas du lynx en Suisse. D'après les résultats obtenus, la meilleure mé- thode pour prédire la distribution du lynx dans une zone alpine dépourvue d'indices de présence est de combiner des données provenant de régions contrastées (Alpes, Jura). Par contre, seules les données sur la présence locale de l'espèce doivent être utilisées pour les zones présentant une faible variance écologique tel que le Jura. La dispersion influence la dynamique et la stabilité des populations, la distribution et l'abondance des espèces et détermine les caractéristiques spatiales et temporelles des communautés vivantes et des écosystèmes. Entre 1988 et 2001, le comportement spatio-temporel de lynx eurasiens subadultes de deux populations réintroduites en Suisse a été étudié, basé sur le suivi de 39 individus juvéniles dont 24 étaient munis d'un collier émetteur, afin de déterminer les facteurs qui influencent la dispersion. Les subadultes se sont séparés de leur mère à l'âge de 8 à 11 mois. Le sexe n'a pas eu d'influence sur le nombre d'individus ayant dispersés et la distance parcourue au cours de la dispersion. Comparé à l'ours et au loup, le lynx reste très modéré dans ses mouvements de dispersion. Tous les individus ayant dispersés se sont établis à proximité ou dans des zones déjà occupées par des lynx. Les distances parcourues lors de la dispersion ont été plus courtes pour la population en phase de haute densité que celles relevées par les autres études de dispersion du lynx eurasien. Les zones d'habitat peu favorables et les barrières qui interrompent la connectivité entre les populations sont les principales entraves aux déplacements, lors de la dispersion. Dans un premier temps, nous avons fait l'hypothèse que les phases de haute densité favorisaient l'expansion des populations. Mais cette hypothèse a été infirmée par les résultats issus du suivi des lynx réalisé dans le nord-ouest des Alpes, où la population connaissait une phase de haute densité depuis 1995. Ce constat est important pour la conservation d'une population de carnivores dans un habitat fragmenté. Ainsi, instaurer une forte population source à un seul endroit n'est pas forcément la stratégie la plus judicieuse. Il est préférable d'établir des noyaux de populations dans des régions voisines où l'habitat est favorable. Des échanges entre des populations avoisinantes pourront avoir lieu par la suite car les lynx adultes sont plus enclins à franchir les barrières qui entravent leurs déplacements que les individus subadultes. Afin d'estimer la taille de la population de lynx dans le Jura et de déterminer les corridors potentiels entre cette région et les zones avoisinantes, un modèle d'habitat a été utilisé, basé sur un nouveau jeu de variables environnementales et extrapolé à l'ensemble du Jura. Le modèle prédit une population reproductrice de 74 à 101 individus et de 51 à 79 individus lorsque les surfaces d'habitat d'un seul tenant de moins de 50 km2 sont soustraites. Comme des corridors potentiels existent effectivement entre le Jura et les régions avoisinantes (Alpes, Vosges, et Forêt Noire), le Jura pourrait faire partie à l'avenir d'une métapopulation, lorsque les zones avoisinantes seront colonisées par l'espèce. La surveillance de la taille de la population, de son expansion spatiale et de sa structure génétique doit être maintenue car le statut de cette population est encore critique. L'AEN a également été utilisée pour prédire l'habitat favorable du lynx dans les Alpes. Le modèle qui en résulte divise les Alpes en 37 sous-unités d'habitat favorable dont la surface varie de 50 à 18'711 km2, pour une superficie totale de 93'600 km2. En utilisant le spectre des densités observées dans les études radio-télémétriques effectuées en Suisse, les Alpes pourraient accueillir une population de lynx résidents variant de 961 à 1'827 individus. Les résultats des analyses de connectivité montrent que les sous-unités d'habitat favorable se situent à des distances telles que le coût de la dispersion pour l'espèce est admissible. L'ensemble des Alpes pourrait donc un jour former une métapopulation. Mais l'expérience montre que très peu d'individus traverseront des habitats peu favorables et des barrières au cours de leur dispersion. Ce faible taux de migration rendra difficile toute nouvelle implantation de populations dans des zones inoccupées. Une solution alternative existe cependant : transférer artificiellement des individus d'une zone à l'autre. Les biologistes spécialistes de la faune sauvage peuvent jouer un rôle important et complémentaire pour les gestionnaires de la faune, en les aidant à mener des expériences de gestion par essai. Le cas du lynx en Suisse est un bel exemple d'une collaboration fructueuse entre biologistes de la faune sauvage, gestionnaires, organes décisionnaires et politiciens. Cette coopération a permis l'élaboration du Concept Lynx Suisse qui est entré en vigueur en 2000 et remis à jour en 2004. Ce plan donne des directives aux cantons pour appréhender la problématique du lynx. Il y a déjà eu des applications concrètes sur le terrain, notamment par des translocations d'individus dans des zones encore inoccupées.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a mixture model based on the beta distribution, without preestablishedmeans and variances, to analyze a large set of Beauty-Contest data obtainedfrom diverse groups of experiments (Bosch-Domenech et al. 2002). This model gives a bettert of the experimental data, and more precision to the hypothesis that a large proportionof individuals follow a common pattern of reasoning, described as iterated best reply (degenerate),than mixture models based on the normal distribution. The analysis shows thatthe means of the distributions across the groups of experiments are pretty stable, while theproportions of choices at dierent levels of reasoning vary across groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comment about the article “Local sensitivity analysis for compositional data with application to soil texture in hydrologic modelling” writen by L. Loosvelt and co-authors. The present comment is centered in three specific points. The first one is related to the fact that the authors avoid the use of ilr-coordinates. The second one refers to some generalization of sensitivity analysis when input parameters are compositional. The third tries to show that the role of the Dirichlet distribution in the sensitivity analysis is irrelevant

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genotypic frequencies at codominant marker loci in population samples convey information on mating systems. A classical way to extract this information is to measure heterozygote deficiencies (FIS) and obtain the selfing rate s from FIS = s/(2 - s), assuming inbreeding equilibrium. A major drawback is that heterozygote deficiencies are often present without selfing, owing largely to technical artefacts such as null alleles or partial dominance. We show here that, in the absence of gametic disequilibrium, the multilocus structure can be used to derive estimates of s independent of FIS and free of technical biases. Their statistical power and precision are comparable to those of FIS, although they are sensitive to certain types of gametic disequilibria, a bias shared with progeny-array methods but not FIS. We analyse four real data sets spanning a range of mating systems. In two examples, we obtain s = 0 despite positive FIS, strongly suggesting that the latter are artefactual. In the remaining examples, all estimates are consistent. All the computations have been implemented in a open-access and user-friendly software called rmes (robust multilocus estimate of selfing) available at http://ftp.cefe.cnrs.fr, and can be used on any multilocus data. Being able to extract the reliable information from imperfect data, our method opens the way to make use of the ever-growing number of published population genetic studies, in addition to the more demanding progeny-array approaches, to investigate selfing rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed under National Cooperative Highway Research Program (NCHRP) Project 1-37A as a novel mechanistic-empirical procedure for the analysis and design of pavements. The MEPDG was subsequently supported by AASHTO’s DARWin-ME and most recently marketed as AASHTOWare Pavement ME Design software as of February 2013. Although the core design process and computational engine have remained the same over the years, some enhancements to the pavement performance prediction models have been implemented along with other documented changes as the MEPDG transitioned to AASHTOWare Pavement ME Design software. Preliminary studies were carried out to determine possible differences between AASHTOWare Pavement ME Design, MEPDG (version 1.1), and DARWin-ME (version 1.1) performance predictions for new jointed plain concrete pavement (JPCP), new hot mix asphalt (HMA), and HMA over JPCP systems. Differences were indeed observed between the pavement performance predictions produced by these different software versions. Further investigation was needed to verify these differences and to evaluate whether identified local calibration factors from the latest MEPDG (version 1.1) were acceptable for use with the latest version (version 2.1.24) of AASHTOWare Pavement ME Design at the time this research was conducted. Therefore, the primary objective of this research was to examine AASHTOWare Pavement ME Design performance predictions using previously identified MEPDG calibration factors (through InTrans Project 11-401) and, if needed, refine the local calibration coefficients of AASHTOWare Pavement ME Design pavement performance predictions for Iowa pavement systems using linear and nonlinear optimization procedures. A total of 130 representative sections across Iowa consisting of JPCP, new HMA, and HMA over JPCP sections were used. The local calibration results of AASHTOWare Pavement ME Design are presented and compared with national and locally calibrated MEPDG models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wide range of modelling algorithms is used by ecologists, conservation practitioners, and others to predict species ranges from point locality data. Unfortunately, the amount of data available is limited for many taxa and regions, making it essential to quantify the sensitivity of these algorithms to sample size. This is the first study to address this need by rigorously evaluating a broad suite of algorithms with independent presence-absence data from multiple species and regions. We evaluated predictions from 12 algorithms for 46 species (from six different regions of the world) at three sample sizes (100, 30, and 10 records). We used data from natural history collections to run the models, and evaluated the quality of model predictions with area under the receiver operating characteristic curve (AUC). With decreasing sample size, model accuracy decreased and variability increased across species and between models. Novel modelling methods that incorporate both interactions between predictor variables and complex response shapes (i.e. GBM, MARS-INT, BRUTO) performed better than most methods at large sample sizes but not at the smallest sample sizes. Other algorithms were much less sensitive to sample size, including an algorithm based on maximum entropy (MAXENT) that had among the best predictive power across all sample sizes. Relative to other algorithms, a distance metric algorithm (DOMAIN) and a genetic algorithm (OM-GARP) had intermediate performance at the largest sample size and among the best performance at the lowest sample size. No algorithm predicted consistently well with small sample size (n < 30) and this should encourage highly conservative use of predictions based on small sample size and restrict their use to exploratory modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data characteristics and species traits are expected to influence the accuracy with which species' distributions can be modeled and predicted. We compare 10 modeling techniques in terms of predictive power and sensitivity to location error, change in map resolution, and sample size, and assess whether some species traits can explain variation in model performance. We focused on 30 native tree species in Switzerland and used presence-only data to model current distribution, which we evaluated against independent presence-absence data. While there are important differences between the predictive performance of modeling methods, the variance in model performance is greater among species than among techniques. Within the range of data perturbations in this study, some extrinsic parameters of data affect model performance more than others: location error and sample size reduced performance of many techniques, whereas grain had little effect on most techniques. No technique can rescue species that are difficult to predict. The predictive power of species-distribution models can partly be predicted from a series of species characteristics and traits based on growth rate, elevational distribution range, and maximum elevation. Slow-growing species or species with narrow and specialized niches tend to be better modeled. The Swiss presence-only tree data produce models that are reliable enough to be useful in planning and management applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Polochic-Motagua fault systems (PMFS) are part of the sinistral transform boundary between the North American and Caribbean plates. To the west, these systems interact with the subduction zone of the Cocos plate, forming a subduction-subduction-transform triple junction. The North American plate moves westward relative to the Caribbean plate. This movement does not affect the geometry of the subducted Cocos plate, which implies that deformation is accommodated entirely in the two overriding plates. Structural data, fault kinematic analysis, and geomorphic observations provide new elements that help to understand the late Cenozoic evolution of this triple junction. In the Miocene, extension and shortening occurred south and north of the Motagua fault, respectively. This strain regime migrated northward to the Polochic fault after the late Miocene. This shift is interpreted as a ``pull-up'' of North American blocks into the Caribbean realm. To the west, the PMFS interact with a trench-parallel fault zone that links the Tonala fault to the Jalpatagua fault. These faults bound a fore-arc sliver that is shared by the two overriding plates. We propose that the dextral Jalpatagua fault merges with the sinistral PMFS, leaving behind a suturing structure, the Tonala fault. This tectonic ``zipper'' allows the migration of the triple junction. As a result, the fore-arc sliver comes into contact with the North American plate and helps to maintain a linear subduction zone along the trailing edge of the Caribbean plate. All these processes currently make the triple junction increasingly diffuse as it propagates eastward and inland within both overriding plates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, ther¬mal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are con¬trolled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evi¬dence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. This work shows however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt (SJDD) bimodal intrusion, France. This intrusion emplaced ca. 347 Ma ago (IDTIMS U/Pb on zircon) in the Precambrian crust of the Armori- can massif and preserves remarkable sill-like emplacement processes of bimodal mafic-felsic magmas. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built ioppolith. Early m-thick mafic sills (eastern part) form the roof of the intrusion and are homogeneous and fine-grained with planar contacts with neighboring felsic sills; within a minimal 0.8 Ma time span, the system gets warmer (western part). Sills are emplaced by under-accretion under the old east¬ern part, interact and mingle. A striking feature of this younger, warmer part is in-situ differentiation of the mafic sills in the top 40 cm of the layer, which suggests liquids survival in the shallow crust. Rheological and thermal models were performed in order to determine the parameters required to allow this observed in- situ differentiation-accumulation processes. Strong constraints such as total emplacement durations (ca. 0.8 Ma, TIMS date) and pluton thickness (1.5 Km, gravity model) allow a quantitative estimation of the various parameters required (injection rates, incubation time,...). The results show that in-situ differentiation may be achieved in less than 10 years at such shallow depth, provided that: (1) The differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens (eastern part formation in the SJDD intrusion). The latter are emplaced in a very short time (800 years) at high injection rate (0.5 m/y) in order to create a "hot zone" in the shallow crust (incubation time). This implies that nearly 1/3 of the pluton (400m) is emplaced by a subsequent and sustained magmatic activity occurring on a short time scale at the very beginning of the system. (2) Once incubation time is achieved, the calculations show that a small hot zone is created at the base of the sill pile, where new injections stay above their solidus T°C and may interact and differentiate. Extraction of differentiated residual liquids might eventually take place and mix with newly injected magma as documented in active syn-emplacement shear-zones within the "warm" part of the pluton. (3) Finally, the model show that in order to maintain a permanent hot zone at shallow level, injection rate must be of 0.03 m/y with injection of 5m thick basaltic sills eveiy 130yr, imply¬ing formation of a 15 km thick pluton. As this thickness is in contradiction with the one calculated for SJDD (1.5 Km) and exceed much the average thickness observed for many shallow level plutons, I infer that there is no permanent hot zone (or magma chambers) at such shallow level. I rather propose formation of small, ephemeral (10-15yr) reservoirs, which represent only small portions of the final size of the pluton. Thermal calculations show that, in the case of SJDD, 5m thick basaltic sills emplaced every 1500 y, allow formation of such ephemeral reservoirs. The latter are formed by several sills, which are in a mushy state and may interact and differentiate during a short time.The mineralogical, chemical and isotopic data presented in this study suggest a signature intermediate be¬tween E-MORB- and arc-like for the SJDD mafic sills and feeder dykes. The mantle source involved produced hydrated magmas and may be astenosphere modified by "arc-type" components, probably related to a sub¬ducting slab. Combined fluid mobile/immobile trace elements and Sr-Nd isotopes suggest that such subduc¬tion components are mainly fluids derived from altered oceanic crust with minor effect from the subducted sediments. Close match between the SJDD compositions and BABB may point to a continental back-arc setting with little crustal contamination. If so, the SjDD intrusion is a major witness of an extensional tectonic regime during the Early-Carboniferous, linked to the subduction of the Rheno-Hercynian Ocean beneath the Variscan terranes. Also of interest is the unusual association of cogenetic (same isotopic compositions) K-feldspar A- type granite and albite-granite. A-type granites may form by magma mixing between the mafic magma and crustal melts. Alternatively, they might derive from the melting of a biotite-bearing quartz-feldspathic crustal protolith triggered by early mafic injections at low crustal levels. Albite-granite may form by plagioclase cu¬mulate remelting issued from A-type magma differentiation.