953 resultados para Diffusion in hydrology
Resumo:
In social anxiety disorder (SAD), impairments in limbic/paralimbic structures are associated with emotional dysregulation and inhibition of the medial prefrontal cortex (MPFq. Little is known, however, about alterations in limbic and frontal regions associated with the integrated morphometric, functional, and structural architecture of SAD. Whether altered gray matter volume is associated with altered functional and structural connectivity in SAD. Three techniques were used with 18 SAD patients and 18 healthy controls: voxel-based morphometry; resting-state functional connectivity analysis; and diffusion tensor imaging tractography. SAD patients exhibited significantly decreased gray matter volumes in the right posterior inferior temporal gyrus (ITG) and right parahippocampal/hippocampal gyrus (PHG/HIP). Gray matter volumes in these two regions negatively correlated with the fear factor of the Liebowitz Social Anxiety Scale. In addition, we found increased functional connectivity in SAD patients between the right posterior ITG and the left inferior occipital gyrus, and between the right PHF/HIP and left middle temporal gyms. SAD patients had increased right MPFC volume, along with enhanced structural connectivity in the genu of the corpus callosum. Reduced limbic/paralimbic volume, together with increased resting-state functional connectivity, suggests the existence of a compensatory mechanism in SAD. Increased MPFC volume, consonant with enhanced structural connectivity, suggests a long-time overgeneralization of structural connectivity and a role of this area in the mediation of clinical severity. Overall, our results may provide a valuable basis for future studies combining morphometric, functional and anatomical data in the search for a comprehensive understanding of the neural circuitry underlying SAD. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Magnetic resonance (MR) imaging is the most important imaging modality for the evaluation of traumatic or degenerative cartilaginous lesions in the knee. It is a powerful noninvasive tool for detecting such lesions and monitoring the effects of pharmacologic and surgical therapy. The specific MR imaging techniques used for these purposes can be divided into two broad categories according to their usefulness for morphologic or compositional evaluation. To assess the structure of knee cartilage, standard spin-echo (SE) and gradient-recalled echo (GRE) sequences, fast SE sequences, and three-dimensional SE and GRE sequences are available. These techniques allow the detection of morphologic defects in the articular cartilage of the knee and are commonly used in research for semiquantitative and quantitative assessments of cartilage. To evaluate the collagen network and proteoglycan content in the knee cartilage matrix, compositional assessment techniques such as T2 mapping, delayed gadolinium-enhanced MR imaging of cartilage (or dGEMRIC), T1 rho imaging, sodium imaging, and diffusion-weighted imaging are available. These techniques may be used in various combinations and at various magnetic field strengths in clinical and research settings to improve the characterization of changes in cartilage. (C)RSNA, 2011 , radiographics.rsna.org
Resumo:
Pfaffia paniculata (Brazilian ginseng) roots and/or its extracts have shown anti-neoplastic, chemopreventive, and anti-angiogenic properties. The aim of this work was to investigate the chemopreventive mechanisms of this root in Mice Submitted to the infant model of hepatocarcinogenesis, evaluating the effects oil cellular proliferation, apoptosis. and intercellular communication. Fifteen-day-old BALB/c male mice were given, i.p., 10 mu g/g of the carcinogen N-nitrosodiethylamine (DEN). Animals were separated into three groups at weaning and were given different concentrations of powdered P. paniculata root (0%, 2%, or 10%) added to commercial food for 27 weeks. Control group (CT) was not exposed to the carcinogen and was given ration without the root. After euthanasia, the animals` liver and body weight were measured. Liver fragments were sampled to Study intercellular communication, molecular biology, and histopathological analysis. Cellular proliferation was evaluated by immunohistochemistry for PCNA, apoptosis was evaluated by apoptotic bodies count and alkaline cornet technique, and inter-cellular communication by diffusion of lucifer yellow dye, immunofluorescence, western blot and real-time PCR for connexins 26 and 32. Chronic treatment with powdered P. paniculata root reduced cellular proliferation and increased apoptosis in the 2%, group. Animals in the 10% group had an increase in apoptosis with chronic inflammatory process. Intercellular communication showed no alterations in any of the groups analyzed. These results Indicate that chemopreventive effects of P. paniculata are related to the control of cellular proliferation and apoptosis, but not to cell communication and/or connexin expression, and are directly Influenced by the root concentration. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
The aim of this study was to evaluate the influence of erbium:yttrium-aluminum-garnet (Er:YAG) laser compared with traditional treatment on dentin permeability to calcitonin and sodium alendronate. Forty bovine roots were sectioned and divided into eight groups. Groups 1 and 2 (G1/G2) were immersed in saline solution; G1T/G2T were immersed in ethylene diamine tetra-acetic acid plus sodium lauryl ether sulfate (EDTA-T) and sodium hypochlorite (NaOCl); G1I/G2I were irradiated with Er:YAG laser (2.94 mu m, 6 Hz, 40.4 J/cm(2)); G1TI/G2TI were immersed in EDTA-T, NaOCl and subjected to Er:YAG irradiation. After 4 h the radioactivity of the saline solution was measured. Statistical analysis revealed a significant difference (P < 0.05) when the groups treated with EDTA-T and NaOCl followed by Er:YAG laser irradiation were compared with the groups treated with EDTA-T only and with the groups that received no treatment. Er:YAG laser associated with traditional procedures significantly increased the diffusion of calcitonin and sodium alendronate through dentin. All groups showed calcitonin and sodium alendronate diffusion.
Resumo:
Ussing [1] considered the steady flux of a single chemical component diffusing through a membrane under the influence of chemical potentials and derived from his linear model, an expression for the ratio of this flux and that of the complementary experiment in which the boundary conditions were interchanged. Here, an extension of Ussing's flux ratio theorem is obtained for n chemically interacting components governed by a linear system of diffusion-migration equations that may also incorporate linear temporary trapping reactions. The determinants of the output flux matrices for complementary experiments are shown to satisfy an Ussing flux ratio formula for steady state conditions of the same form as for the well-known one-component case. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.
Resumo:
During investigation of an outbreak of Japanese encephalitis (JE) in the Torres Strait, Australia, in 2000, mosquitoes were collected in Badu Island community and at a newly established communal piggery about 3 km from the community. A total of 94285 mosquitoes, comprising 91240 (96.8%) unengorged females, 1630 (1.7%) blood-engorged females and 1415 (1.5%) males, were processed for virus isolation. One isolate of JE virus was obtained from Culex gelidus, with a minimum infection rate of 12.4:1000. This is the first isolate of JE virus from Cx. gelidus in the Australasian region. No isolates were obtained from Cx. annulirostris, the primary implicated Australian JE vector. Analysis of mosquito host-feeding patterns, using gel diffusion, demonstrated that Cx. annulirostris and 5 other species fed predominately on mammals, Analysis of blood-fed mosquitoes collected within the community demonstrated that the proportion of Cx. annulirostris feeding on pigs in 2000 (2.3%) was significantly lower than that for the 1995-97 period (31.3%). The removal of the pigs from Badu Island community has limited the contact between potential amplifying hosts and mosquitoes, thus potentially reducing the risk of transmission of JE virus to the human population.
Resumo:
The molecular weight changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) under vacuum between 77 and 373 K and in air at 303 K have been investigated using triple detection GPC to obtain the complete molecular weight distributions for the irradiated samples and to determine the number and weight average molecular weights. The results have been interpreted in terms of the relative yields of scission and crosslinking. The total yields for crosslinking predominate over those for scission at all the temperatures investigated for radiolysis under vacuum. Based on a solid-state Si-29 NMR analysis of PDMS irradiated under vacuum at 303 K, which yielded a value of G(Y) of 1.70, the values of G(S) = 1.15 +/-0.2 and G(H) = 1.45 +/-0.2 were obtained for radiolysis under vacuum at 303 K. For radiolysis in air at 303 K, crosslinking was also predominant, but the nett yield of crosslinking was much less than that observed for radiolysis under vacuum. Under the conditions of the radiolysis in air at 303 K, because of the low solubility of oxygen in PDMS, it is likely that the radiation chemistry is limited by oxygen diffusion. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The toxicities and uptake mechanisms of two hepatotoxins, namely cylindrospermopsin and lophyrotomin, were investigated on primary rat hepatocytes by using microcystin-LIZ (a well-known hepatotoxin produced by cyanobacteria) as a comparison. Isolated rat hepatocytes were incubated with different concentrations of hepatotoxins for 0, 24, 48 and 72 h. The cell viability was assayed by the tetrazolium-based (MTT) assay. Microcystin-LR, cylindrospermopsin and lophyrotomin all exhibited toxic effects on the primary rat hepatocytes with 72-h LC50 of 8, 40 and 560 ng/ml, respectively. The involvement of the bile acid transport system in the hepatotoxin-induced toxicities was tested in the presence of two bile acids, cholate and taurocholate. Results showed that the bile acid transport system was responsible for the uptake, and facilitated the subsequent toxicities of lophyrotomin on hepatocytes. This occurred to a much lesser extent with cylindrospermopsin. With its smaller molecular weight, passive diffusion might be one of the possible mechanisms for cylindrospermopsin uptake into hepatocytes. This was supported by incubating a permanent cell line, KB (devoid of bile acid transport system), with cylindrospermopsin which showed cytotoxic effects. No inhibition of protein phosphatase 2A by cylindrospermopsin or lophyrotomin was found. This indicated that other toxic mechanisms besides protein phosphatase inhibition were producing the toxicities of cylindrospermopsin and lophyrotomin, and that they were unlikely to be potential tumor promoters. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Petrov-Galerkin methods are known to be versatile techniques for the solution of a wide variety of convection-dispersion transport problems, including those involving steep gradients. but have hitherto received little attention by chemical engineers. We illustrate the technique by means of the well-known problem of simultaneous diffusion and adsorption in a spherical sorbent pellet comprised of spherical, non-overlapping microparticles of uniform size and investigate the uptake dynamics. Solutions to adsorption problems exhibit steep gradients when macropore diffusion controls or micropore diffusion controls, and the application of classical numerical methods to such problems can present difficulties. In this paper, a semi-discrete Petrov-Galerkin finite element method for numerically solving adsorption problems with steep gradients in bidisperse solids is presented. The numerical solution was found to match the analytical solution when the adsorption isotherm is linear and the diffusivities are constant. Computed results for the Langmuir isotherm and non-constant diffusivity in microparticle are numerically evaluated for comparison with results of a fitted-mesh collocation method, which was proposed by Liu and Bhatia (Comput. Chem. Engng. 23 (1999) 933-943). The new method is simple, highly efficient, and well-suited to a variety of adsorption and desorption problems involving steep gradients. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In this study we present a novel automated strategy for predicting infarct evolution, based on MR diffusion and perfusion images acquired in the acute stage of stroke. The validity of this methodology was tested on novel patient data including data acquired from an independent stroke clinic. Regions-of-interest (ROIs) defining the initial diffusion lesion and tissue with abnormal hemodynamic function as defined by the mean transit time (MTT) abnormality were automatically extracted from DWI/PI maps. Quantitative measures of cerebral blood flow (CBF) and volume (CBV) along with ratio measures defined relative to the contralateral hemisphere (r(a)CBF and r(a)CBV) were calculated for the MTT ROIs. A parametric normal classifier algorithm incorporating these measures was used to predict infarct growth. The mean r(a)CBF and r(a)CBV values for eventually infarcted MTT tissue were 0.70 +/-0.19 and 1.20 +/-0.36. For recovered tissue the mean values were 0.99 +/-0.25 and 1.87 +/-0.71, respectively. There was a significant difference between these two regions for both measures (P
Resumo:
Five kinetic models for adsorption of hydrocarbons on activated carbon are compared and investigated in this study. These models assume different mass transfer mechanisms within the porous carbon particle. They are: (a) dual pore and surface diffusion (MSD), (b) macropore, surface, and micropore diffusion (MSMD), (c) macropore, surface and finite mass exchange (FK), (d) finite mass exchange (LK), and (e) macropore, micropore diffusion (BM) models. These models are discriminated using the single component kinetic data of ethane and propane as well as the multicomponent kinetics data of their binary mixtures measured on two commercial activated carbon samples (Ajax and Norit) under various conditions. The adsorption energetic heterogeneity is considered for all models to account for the system. It is found that, in general, the models assuming diffusion flux of adsorbed phase along the particle scale give better description of the kinetic data.
Resumo:
In this paper, we develop a theory for diffusion and flow of pure sub-critical adsorbates in microporous activated carbon over a wide range of pressure, ranging from very low to high pressure, where capillary condensation is occurring. This theory does not require any fitting parameter. The only information needed for the prediction is the complete pore size distribution of activated carbon. The various interesting behaviors of permeability versus loading are observed such as the maximum permeability at high loading (occurred at about 0.8-0.9 relative pressure). The theory is tested with diffusion and flow of benzene through a commercial activated carbon, and the agreement is found to be very good in the light that there is no fitting parameter in the model. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents results from field studies carried out during the 1993-1998 Australian cotton (Gossypium hirsutum L.) seasons to monitor off-target droplet movement of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) insecticide applied to a commercial cotton crop. Averaged over a wide range of conditions, off-target deposition 500 m downwind of the field boundary was approximately 2% of the field-applied rate with oil-based applications and 1% with water-based applications. Mean airborne drift values recorded 100 m downwind of a single flight line were a third as much with water-based application compared with oil-based application. Calculations using a Gaussian diffusion model and the U.S. Spray Drift Task Force AgDRIFT model produced downwind drift profiles that compared favorably with experimental data. Both models and data indicate that by adopting large droplet placement (LDP) application methods and incorporating crop buffer distances, spray drift can be effectively managed.
Resumo:
Calcium precipitation can have a number of effects on the performance of high-rate anaerobic performance including cementing of the sludge bed, limiting diffusion, and diluting the active biomass. The aim of this study was to observe the influence of precipitation in a stable full-scale system fed with high-calcium paper factory wastewater. Granules were examined from an upflow anaerobic sludge blanket reactor (volume 1,805 m(3)) at a recycled paper mill with a loading rate of 5.7-6.6 kgCOD.m(-3).d(-1) and influent calcium concentration of 400-700 gCa(.)m(-3). The granules were relatively small (1 mm), with a 200-400 mum core of calcium precipitate as observed with energy dispersive X-ray spectroscopy. Compared to other granules, Methanomicrobiales not Methanobacteriales were the dominant hydrogen or formate utilisers, and putative acidogens were filamentous. The strength of the paper mill fed granules was very high when compared to granules from other full-scale reactors, and a partial linear correlation between granule strength and calcium concentration was identified.