952 resultados para Diesel locomotives
Resumo:
An increasin g interest in biofuel applications in modern engines requires a better understanding of biodiesel combustion behaviour. Many numerical studies have been carried out on unsteady combustion of biodiesel in situations similar to diesel engines, but very few studies have been done on the steady combustion of biodiesel in situations similar to a gas turbine combustor environment. The study of biodiesel spray combustion in gas turbine applications is of special interest due to the possible use of biodiesel in the power generation and aviation industries. In modelling spray combustion, an accurate representation of the physical properties of the fuel is a first important step, since spray formation is largely influenced by fuel properties such as viscosity, density, surface tension and vapour pressure. In the present work, a calculated biodiesel properties database based on the measured composition of Fatty Acid Methyl Esters (FAME) has been implemented in a multi-dimensional Computational Fluid Dynamics (CFD) spray simulation code. Simulations of non-reacting and reacting atmospheric-pressure sprays of both diesel and biodiesel have been carried out using a spray burner configuration for which experimental data is available. A pre-defined droplet size probability density function (pdf) has been implemented together with droplet dynamics based on phase Doppler anemometry (PDA) measurements in the near-nozzle region. The gas phase boundary condition for the reacting spray cases is similar to that of the experiment which employs a plain air-blast atomiser and a straight-vane axial swirler for flame stabilisation. A reaction mechanism for heptane has been used to represent the chemistry for both diesel and biodiesel. Simulated flame heights, spray characteristics and gas phase velocities have been found to compare well with the experimental results. In the reacting spray cases, biodiesel shows a smaller mean droplet size compared to that of diesel at a constant fuel mass flow rate. A lack of sensitivity towards different fuel properties has been observed based on the non-reacting spray simulations, which indicates a need for improved models of secondary breakup. By comparing the results of the non-reacting and reacting spray simulations, an improvement in the complexity of the physical modelling is achieved which is necessary in the understanding of the complex physical processes involved in spray combustion simulation. Copyright © 2012 SAE International.
Resumo:
This work initiated the development of operating envelopes for stabilised/solidified contaminated soils. The operating envelopes define the range of operating variables for acceptable performance of the treated soils. The study employed a soil spiked with 3,000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel. The binders used for treatment involved Portland cement (CEMI), pulverised fuel ash (PFA), ground granulated blast furnace slag (GGBS) and hydrated lime (hlime). The specific binder formulations were CEMI, CEMI/PFA = 1:4, CEMI/GGBS = 1:9 and hlime/GGBS = 1:4. The water contents employed ranged from 13 % to 21 % (dry weight), while binder dosages ranged from 5 % to 20 % (w/w). We monitored the stabilised/solidified soils for up to 84 days using different performance tests. The tests include unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. The water content range resulted in adequate workability of the mixes but had no significant effect on leachability of contaminants. We produced design charts, representing operating envelopes, from the results generated. The charts establish relationships between water content, binder dosage and UCS; and binder dosage, leachant pH and leachability of contaminants. The work also highlights the strengths and weaknesses of the different binder formulations. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The environmental impact of diesel-fueled buses can potentially be reduced by the adoption of alternative propulsion technologies such as lean-burn compressed natural gas (LB-CNG) or hybrid electric buses (HEB), and emissions control strategies such as a continuously regenerating trap (CRT), exhaust gas recirculation (EGR), or selective catalytic reduction with trap (SCRT). This study assessed the environmental costs and benefits of these bus technologies in Greater London relative to the existing fleet and characterized emissions changes due to alternative technologies. We found a >30% increase in CO2 equivalent (CO2e) emissions for CNG buses, a <5% change for exhaust treatment scenarios, and a 13% (90% confidence interval 3.8-20.9%) reduction for HEB relative to baseline CO2e emissions. A multiscale regional chemistry-transport model quantified the impact of alternative bus technologies on air quality, which was then related to premature mortality risk. We found the largest decrease in population exposure (about 83%) to particulate matter (PM2.5) occurred with LB-CNG buses. Monetized environmental and investment costs relative to the baseline gave estimated net present cost of LB-CNG or HEB conversion to be $187 million ($73 million to $301 million) or $36 million ($-25 million to $102 million), respectively, while EGR or SCRT estimated net present costs were $19 million ($7 million to $32 million) or $15 million ($8 million to $23 million), respectively.
Resumo:
An important first step in spray combustion simulation is an accurate determination of the fuel properties which affects the modelling of spray formation and reaction. In a practical combustion simulation, the implementation of a multicomponent model is important in capturing the relative volatility of different fuel components. A Discrete Multicomponent (DM) model is deemed to be an appropriate candidate to model a composite fuel like biodiesel which consists of four components of fatty acid methyl esters (FAME). In this paper, the DM model is compared with the traditional Continuous Thermodynamics (CTM) model for both diesel and biodiesel. The CTM model is formulated based on mixing rules that incorporate the physical and thermophysical properties of pure components into a single continuous surrogate for the composite fuel. The models are implemented within the open-source CFD code OpenFOAM, and a semi-quantitative comparison is made between the predicted spray-combustion characteristics and optical measurements of a swirl-stabilised flame of diesel and biodiesel. The DM model performs better than the CTM model in predicting a higher magnitude of heat release rate in the top flame brush region of the biodiesel flame compared to that of the diesel flame. Using both the DM and CTM models, the simulation successfully reproduces the droplet size, volume flux, and droplet density profiles of diesel and biodiesel. The DM model predicts a longer spray penetration length for biodiesel compared to that of diesel, as seen in the experimental data. Also, the DM model reproduces a segregated biodiesel fuel vapour field and spray in which the most abundant FAME component has the longest vapour penetration. In the biodiesel flame, the relative abundance of each fuel component is found to dominate over the relative volatility in terms of the vapour species distribution and vice versa in the liquid species distribution. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
A High Temperature Condensation Particle Counter (HT-CPC) is described that operates at an elevated temperature of up to ca. 300. °C such that volatile particles from typical combustion sources are not counted. The HT-CPC is functionally identical to a conventional CPC, the main challenge being to find suitable non-hazardous working fluids, with good stability, and an appropriate vapour pressure. Some key design features are described, and results of modelling which predict the HT-CPC counting efficiency. Experimental results are presented for several candidate fluids when the HT-CPC was challenged with ambient, NaCl and diesel soot particles, and the results show good agreement with modelled predictions, and confirm that counting of particles of diameters down to at least 10. nm was achievable. Possible applications are presented, including measurement of particles from a diesel car engine and comparison with a near PMP system. © 2014 Elsevier Ltd.
Resumo:
Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit OR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
© 2014, Springer-Verlag London. Engineering changes are essential for any product development, and their management has become a crucial discipline. Research in engineering change management has brought about some methods and tools to support dealing with changes. This work extends the change prediction method through incorporation of a function–behaviour–structure (FBS) scheme. These additional levels of detail provide the rationales for change propagation and allow a more proactive management of changes. First, we develop the ontology of this method based on a comprehensive comparison of three seminal functional reasoning schemes. Then, we demonstrate the FBS Linkage technique by applying it to a diesel engine. Finally, we evaluate the method.
Resumo:
Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
酸化油是油脂工业中以皂脚、油脚经酸化处理得到的产品。它的主要成分是游离脂肪酸及中性油,是生产脂肪酸的重要原料,但生产过程中有水解废水的产生,若将其直接排放,既污染了环境又浪费了资源。生物柴油的主要成分是脂肪酸甲酯(fatty acid methyl ester,FAME)。它具有原料丰富而且可再生、可生物降解、无毒、不含芳香烃、二氧化硫等污染物、燃烧排放低、闪点高、运输储存安全等特点。作为石化柴油的潜在替代能源,生物柴油因其独特的优越性和现实的需求越来越受到关注。利用酸化油生产生物柴油不仅可以缓解生物柴油原料不足问题,还可解决酸化油所带来的环境问题。
The convertion of acid oil to biodiesel by use of immobilized Candida lipase absorbed on textile cloth was studied in a fixed bed reactor, which can not only reduce the environmental pollution of acid oil, but also produce a substitute for petroleum diesel. The acid oil mixed with methanol was pumped into three fixed bed reactors in series, and the methanol was added with the molar flow rate same as the acid oil in each reactor. The effects of enzyme content, solvent content, water content, flow rate of reactant and temperature on the enzymatic reaction were analyzed. The result of orthogonal experiments indicates that the optimal transesterification can be performed under the following conditions: immobilized lipase content in acid oil, 20% ; hexane content in acid oil, 10% ; water content in acid oil, 10%, reaction temperature, 50 ℃ ; and flow rate of reactant, 0.08 g/rain. Under these conditions, the FAME content of 90.18% in the product is obtained. The immobilized lipase can be reused with relatively stable activity after glycerol being removed from the surface. By refining, most of the chemical and physical properties of biodiesel will meet the American and Germany biodiesel standards and exceed the Chinese standard of 0^# petroleum diesel except for carbon residue, density and kinematic viscosity.
Resumo:
Waste cooking oil (WCO) is the residue from the kitchen, restaurants, food factories and even human and animal waste which not only harm people's health but also causes environmental pollution. The production of biodiesel from waste cooking oil to partially substitute petroleum diesel is one of the measures for solving the twin problems of environment pollution and energy shortage. In this project, synthesis of biodiesel was catalyzed by immobilized Candida lipase in a three-step fixed bed reactor. The reaction solution was a mixture of WCO, water, methanol and solvent (hexane). The main product was biodiesel consisted of fatty acid methyl ester (FAME), of which methyl oleate was the main component. Effects of lipase, solvent, water, and temperature and flow of the reaction mixture on the synthesis of biodiesel were analyzed. The results indicate that a 91.08% of FAME can be achieved in the end product under optimal conditions. Most of the chemical and physical characters of the biodiesel were superior to the standards for 0(#)diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D-6751).
Resumo:
Acid oil, which is a by-product in vegetable oil refining, mainly contains free fatty acids (FFAs) and acylglycerols and is a feedstock for production of biodiesel fuel now. The transesterification of acid oil and methanol to biodiesel was catalyzed by immobilized Candida lipase in fixed bed reactors. The reactant solution was a mixture of acid oil, water, methanol and solvent (hexane) and the main product was biodiesel composed of fatty acid methyl ester (FAME) of which the main component was methyl oleate. The effects of lipase content, solvent content, water content temperature and flow velocity of the reactant on the reaction were analyzed. The experimental results indicate that a maximum FAME content of 90.18% can be obtained in the end product under optimum conditions. Most of the chemical and physical properties of the biodiesel were superior to the standards for 0(#) diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D6751).
Resumo:
The feasibility of biodiesel production from soapstock containing high water content and fatty matters by a solid acid catalyst was investigated. Soapstock was converted to high-acid acid oil (HAAO) by the hydrolysis by KOH and the acidulation by sulfuric acid. The acid value of soapstock-HAAO increased to 199.1 mg KOH/g but a large amount of potassium sulfate was produced. To resolve the formation of potassium sulfate, acid oil was extracted from soapstock and was converted to HAAO by using sodium dodecyl benzene sulfonate (SDBS). The maximum acid value of acid oil-HAAO was 194.2 mg KOH/g when the mass ratio of acid oil, sulfuric acid, and water was 10:4:10 at 2% of SDBS. In the esterification of HAAO using Amberylst-15, fatty acid methyl ester (FAME) concentration was 91.7 and 81.3% for soapstock and acid oil, respectively. After the distillation, FAME concentration became 98.1% and 96.7% for soapstock and acid oil. The distillation process decreased the total glycerin and the acid value of FAME produced a little.
Resumo:
The production of biodiesel is greatly increasing due to its enviromental benefits. However, production costs are still rather high, compared to petroleum-based diesel fuel. The introduction of a solid heterogeneous catalyst in biodiesel production could reduce its price, becoming competitive with diesel also from a financial point of view. Therefore, great research efforts have been underway recently to find the right catalysts. This paper will be concerned with reviewing acid and basic heterogeneous catalyst performances for biodiesel production, examining both scientific and patent literature.
Resumo:
Solid acid 40SiO(2)/TiO2-SO42- and solid base 30K(2)CO(3)/Al2O3-NaOH were prepared and compared with catalytic esterification activity according to the model reaction. Upgrading bio-oil by solid acid and solid base catalysts in the conditioned experiment was investigated, in which dynamic viscosities of bio-oil was lowered markedly, although 8 months of aging did not show much viscosity to improve its fluidity and enhance its stability positively. Even the dehydration by 3A molecular sieve still kept the fluidity well. The density of upgraded bio-oil was reduced from 1.24 to 0.96 kg/m(3), and the gross calorific value increased by 50.7 and 51.8%, respectively. The acidity of upgraded bio-oil was alleviated by the solid base catalyst but intensified by the solid acid catalyst for its strong acidification. The results of gas chromatography-mass spectrometry analysis showed that the ester reaction in the bio-oil was promoted by both solid acid and solid base catalysts and that the solid acid catalyst converted volatile and nonvolatile organic acids into esters and raised their amount by 20-fold. Besides the catalytic esterification, the solid acid catalyst carried out the carbonyl addition of alcohol to acetals. Some components of bio-oil undertook the isomerization over the solid base catalyst.