939 resultados para Dicamba and 2,4-D


Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文叙述了两个玉米基因型(小八趟×水白和白17)原生质体培养的植株再生;用基因型(小八趟×水白)为材料研究影响玉米原生质体培养的各种因素,并此基因型的原生质体经超低温保存后获得植株再生;以及用多种基因型玉米幼胚为材料诱导愈伤组织与植株再生。 影响玉米原生质体游离、分裂与植株再生的因素是多方面的。酶液组合0.2% Onozuka RS + 1% Hemicellulase + 0.1% Pectolyase,利用继代8-16天的愈伤组织,所获原生质体的数量与质量最佳。在原生质体植板率方面,结果表明:N6作为基本培养基是理想的;氮源中,NO3-具有明显的促进作用,而NH4+具有明显的抑制作用;有机氮源是不能缺少的,所使用的四种有机氮源中L-脯氨酸效果最明显。2,4-D浓度以1.0 mg/l最佳。原生质体培养后的渗透压浓度降低的时间以培养四星期后为宜。利用三步诱导,成功地获得胚胎发生的植株再生,并且还指出原生质体起始材料的保存年限大大影响原生质体所再生愈伤组织的分化。 采用上述筛选出的最佳游离、培养以及植株再生的方法,成功地培养了基因型(白17)的原生质体,并获得植株再生。原生质体再生细胞培养4-5天后开始一次分裂;培养15天后,植板率为3-4%。一个月后,原生质体所再生的肉眼可见的愈伤组织,分步转至分化培养基。最后,愈伤组织通过胚胎发生获得植株再生,频率约10%。 玉米原生质体,利用5%DMSO与0.55 M葡萄糖作为混合保护剂,经慢速(1 ℃/分钟)降至-40 ℃,停留二小时后直接投入液氮保存。保存3天后,原生质体在40 ℃的温水浴中快速化冻,成活率高达30-40%。成活原生质体培养后生长正常,植板率高达8-10%。培养5-6星期后,再生愈伤组织转至分化培养基;最后获得植株再生,频率为5-10%。 本文最后叙述了玉米七种基因型的幼胚诱导获得愈伤组织,再生植株频率可达70-80%。 上述各方面的研究结果,对玉米的遗传操作和细胞抗寒性研究、生理代谢的研究等都是十分有价值的。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

硬粒小麦DR147授以超甜玉米(ss7700)的花粉后,83.4%的小麦柱头上的玉米花粉萌发,花粉管经由花柱抵达胚囊,受精率和成胚率分别为44.4%和42.6%。杂种合子核型高度不稳定,在细胞分裂过程中来自父本玉米的染色体逐渐被排除,最后形成硬粒小麦单倍体胚。尽管硬粒小麦×玉米存在较高频率的双受精(32.7%),同时形成胚和胚乳,但由于胚乳发育异常及败育,最后难以获得有生活力的种子。 硬粒小麦授以玉米的花粉后用100ppm 2,4-D进行处理(浸蘸穗子或向穗茎节间注射),可以延长杂种胚在植株上的存活时间。授粉9-13天后将颖果表面灭菌后在实体显微镜下剥取不同发育时期的幼胚,分别接种于含或不含2.0mg/l2,4-D,3%蔗糖,200mg/l水解酪蛋白,146mgl谷氨酰氨,300mg/l天冬氨酸的MS固体培养基上进行胚拯救或诱导愈伤组织。结果表明,发育程度较高的胚(具盾片的胚,长度大于0.5mm)容易通过胚拯救获得单倍体植株或诱导出愈伤组织,而发育程序较低的胚(琏形胚,梨形胚,鱼雷形胚,长度小于0.3mm)不易获得单倍体植株或诱导愈伤组织而常常变褐,最后死亡。如果将这些胚预先接种子含0.1mg/l BAP,3%蔗糖,200mg/l水解酪蛋白,146mg/l谷氨酰胺,300mg/l天冬氮酸的MS固体培养基上预培养20天,再转移至愈伤组织诱导培养基上则易于产生愈伤组织,通过选择和继代培养可以获得淡黄色,结构致密的胚性愈伤组织。将这种愈伤组织转移至含1.Omg/l BAP和0.1mg/l NAA的MS固体分化培养基上培养20天后即可分化出小植株和绿色芽点,将这些小植株和绿色芽点再在分化培养基上继代培养20天,形成大量根系发达的健壮植株及次生小植株。其中一个胚性愈伤组织系的分化频率高达70. 6%。从获得的100余棵植株中随机取6棵再生植株进行根尖细胞染色体计数发现它们均为单倍体。具发达根系的健壮植株移入实验田后成活率可达80%以上,并生长至成熟。 利用硬粒小麦×玉米建立的单倍性胚性愈伤组织系进行了原生质体培养的研究。胚性愈伤组织经液体悬浮培养4个月后形成了生长迅速的由大小不同(0.5mm至5mm)的愈伤组织块组成的混合悬浮愈伤组织系,酶解试验表明2.0%纤维素酶RS和0.5%离析酶Y-23组合效果最好,而液体悬浮培养物和固体培养的愈伤组织(在酶解时用锋利的解剖刀片切成1mm左右的块)都能释放出大量原生质体,但悬浮培养物释放出的原生质体状态较好,胞质更浓厚,用KM8p培养基以琼脂糖包埋培养方式培养时得到了较高的(5%左右)分裂频率。 原生质体再生的小愈伤组织经增殖、筛选后可获得胚性愈性组织,将其转移至分化培养基Ⅰ(0.2mg/l 2,4-D,1.0mg/l BAP,0.1mg/l NAA,3%蔗糖,200mg/l水解酩蛋白,146mg/l谷氨酸胺,300m8/l天冬氨酸的MS固体培养基)和Ⅱ(不含2,4-D,其它成份同I)上进行分步分化培养可再生出完整植株,分化频率约为20%。从获得的22棵原生质体再生植株中,随机取4株进行根尖细胞染色体计数表明,它们均为单倍体。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

猕猴桃是重要的栽培果树,但目前栽培品种过于单一,不能满足生产和消费的需求。由于猕猴桃的雌雄异株特性、种间杂交亲合性差、遗传上高度杂合以及育种周期长等特点,常规杂交育种困难很大。现代生物技术,如原生质体培养和体细胞杂交等,为培育新品种提供了新途径。 毛花猕猴桃(Actinidia eriantha)和软枣猕猴桃(A.arguta)是猕猴桃属中具有重要利用价值的两个种。毛花猕猴桃果实大小在猕猴桃属中次于中华猕猴桃(A.chinensis)和美味猕猴桃(A.deliciosa)列第三位,果实维生素C含量达1014 mg/l00 g FW。软枣猕猴桃极耐寒,在-40℃下可安全越冬,其果实表面光滑无毛。这两个种是品种改良的重要种质资源。 作为生物技术基础的组织培养与植株再生系统,在毛花猕猴桃上尚未见报道。软枣猕猴桃的组织培养仅有一例报道,且芽分化率和分化系数都很低。这两个种的原生质体培养及与美味猕猴桃的原生质体融合也未见报道。针对这种情况,本试验对毛花猕猴桃和软枣猕猴桃的组织培养、原生质体培养及其与美味猕猴桃品种“Hayward”的原生质体融合进行研究,结果建立了较理想的毛花猕猴桃和软枣猕猴桃组织培养系统;首次从毛花猕猴桃原生质体得到再生植株和从软枣猕猴桃原生质体培养再生愈伤组织;通过改进融合方法,建立了毛花猕猴桃+美味猕猴桃和软枣猕猴桃+美味猕猴桃的原生质体融合体系,并将异核体培养分裂得到细胞团。这些结果有利于今后毛花猕猴桃和软枣猕猴桃资源的开发利用。主要试验结果如下: 以毛花猕猴桃试管实生苗叶片和茎段为外植体,培养在附加一定浓度Zea或CPPU的MS培养基上,产生的愈伤组织不经转代就可分化芽。试管苗茎段在附加0.0025 mg/L CPPU和0.1 mg/LIAA的MS培养基上愈伤组织产生、芽分化和苗生长都较理想;试管苗叶片则以附加0.025 mg/L CPPU和0.l mg/LIAA或0.5 mg/L Zea和0.1 mg/LIAA的MS培养基较好。当苗生长至1.0 cm时经诱导生根形成完整植株。 在软枣猕猴桃组织培养中,外植体种类、诱导培养基的激素种类和诱导分化时细胞分裂素种类都有重要影响。无菌苗茎段容易愈伤组织化,但分化困难;叶片外植体产生愈伤组织较难,但分化容易。在含Zea的MS培养基上,两种外植体产生的愈伤组织不经转代即能分化芽。分化培养基中添加Zea能有效地诱导芽分化,其中以2.0 mg/L Zea芽的分化最好,而Kin和BAP在0.5- 2.0 mg/L浓度范围内愈伤组织不分化。 以毛花猕猴桃或软枣猕猴桃试管苗叶片为分离原生质体的材料。试管苗的培养条件对原生质体分离效果及其培养反应有显著影响。弱光培养条件对两个种试管苗的原生质体分离及其培养都有好处,试管苗培养基也有重要影响。毛花猕猴桃和软枣猕猴桃试管苗合适培养基分别为MS基本培养基(大量元素减半)和MS+0.00025 mg/L CPPU+ 0.1 mg/LIAA。在此条件下培养的两个种的试管苗叶片,经酶解后原生质体产量分别为0.7-1.8×l06和3.0-3.5×l06/1 g FW,其原生质体在合适培养基上能够分裂。 毛花猕猴桃原生质体培养在MS培养基(去除NH4N03)附加l.0mg/L2,4-D液体培养基中,约10天时发生第一次分裂,分裂能持续下去并在培养3个月时形成约2mm大小愈伤组织。直接将其转入固体培养基中使其增殖和分化。在附加Zea 0.5 mg/L+ O.l mg/L IAA的MS培养基上继代2次,愈伤组织开始分化芽。芽伸长后切下诱导生根,形成完整植株。软枣猕猴桃原生质体培养基中,MS培养基附加2,4-D配合Zea或Kin对启动分裂是必须的,其中以MS+2,4-D 0.5 mg/L+ Zea 0.5 mg/L最好,在此培养基上原生质体第一次分裂发生在4-6天时,培养12-14天时见到第三次分裂,培养三周的分裂频率为23%。培养45天后形成许多小愈伤组织块。软枣猕猴桃原生质体再生的愈伤组织从液体培养基转入固体培养基后未见进一步分裂。 对18株毛花猕猴桃原生质体再生植株的体细胞染色体数目作了观察,其中12株为整倍体,二倍体和四倍体各六株;另外六株为混倍体,其染色体数目变化在59-203之间。还发现原生质体再生植株有丝分裂间期细胞存在多核现象,有多核细胞的共10株,细胞内多核数目以双核和三核较常见,最多的有七个核。原生质体供体植株为2n=2x=58,未发现多核细胞。原生质体再生植株体细胞多核现象未见报道。 利用毛花猕猴桃或软枣猕猴桃叶片原生质体分别与愈伤组织来源的美味猕猴桃原生质体进行融合,融合方法为高Ca++高pH值PEG法。对Kao等(1975)报道的融合步骤作了修改。影响融合效率的因素主要有PEG种类、融合作用时间和融合液中DMSO浓度。最佳的融合条件为40%PEG (Sigma,MW3350)+10%DMSO,作用40 min。毛花猕猴桃+美味猕猴桃和软枣猕猴桃+美味猕猴桃的融合频率分别可达14.5%和13.6%。异核体经培养可分裂并形成细胞团。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

火炬松(Pinus taeda L.)原产美国东南部,是世界南方松中最重要的绿化和造林用速生针叶树种,现广泛分布于全球亚热带和部分热带地区,在我国的栽植面积居世界第2位,仅次于美国。目前,火炬松离体快速繁殖、遗传转化和品种改良研究中最大的障碍是没有获得良好的植株再生体系。本研究以火炬松的成熟种子为试材,建立了可调控的体细胞胚胎发生和器官发生植株再生系统,并对再生过程中的形态学变化进行了细胞学观察和扫描电镜观察;建立了胚性细胞悬浮系,测定了其重要生长参数的变化动态,优化了悬浮条件下体细胞胚胎发生的培养条件及悬浮细胞原生质体直接体细胞胚胎发生的培养条件。 进行了HA、HB、HC、MA、MB、MC、LA和LB等8种不同基因型的成熟合子胚在BMS、DCR、GD、LM、LP、MNCI、MS、SH及自行设计的TE等9种不同基本培养基上的愈伤组织诱导试验,筛选获得了愈伤组织发生频率较高的基因型HB、MA和MC,及基本培养基DCR和TE。激素组合试验表明,2,4-D和BA最有利于愈伤组织发生。两因子5水平等重复的愈伤组织诱导试验及方差分析结果证实,8 mg•L~(-1)2,4-D和4 mg•L~(-1)BA是愈伤组织诱导的最佳激素组合。诱导产生的愈伤组织经2次继代后,可明显分为4种类型,它们是1)白色、半透明、有光泽的粘性愈伤组织(WTGM);2)淡黄色、疏松、有光泽的颗粒状愈伤组织(YLGG);3)淡绿色、疏松的颗粒状愈伤组织(GLG);和4)浅白色、水浸状的粘性愈伤组织(WMM)。其中白色、半透明、有光泽的粘性愈伤组织有较强的体细胞胚胎发生能力,淡黄色、疏松、有光泽的颗粒状愈伤组织有较强的不定芽发生能力。这两种愈伤组织的最高诱导频率分别是28.1%和35.7%。 在附加2,4-D、IBA和BA的DCR体细胞胚诱导培养基上,白色、半透明、有光泽的粘性愈伤组织中的胚性细胞形成胚性胚柄细胞团和早期原胚。提高培养基中的渗透压后,早期原胚发育成后期原胚。在附加ABA、PEG和活性炭的DCR体细胞胚成熟培养基上,后期原胚发育成子叶胚。在无激素DCR培养基上,子叶胚萌发形成再生完整植株。体细胞胚转换成小植株的最高频率是18.4%。在直接体细胞胚诱导增养基和直接体细胞胚发育培养基的作用下,成熟合子胚的子叶和胚轴上直接形成体细胞胚。直接体细胞胚胎发生的最高频率是18%。 在附加NAA、IBA和BA的TE不定芽原基诱导培养基上,淡黄色、疏松、有光泽的颗粒状愈伤组织中的胚性细胞形成不定芽原基。在附加IBA和BA的TE不定芽分化培养基上,不定芽原基分化产生不定芽。用基因型HB、MA和MC的淡黄色、疏松、有光泽的颗粒状愈伤组织进行的试验表明,不定芽分化的最佳低温(4 ℃)处理时间是5~6周,最佳蔗糖浓度是25~30 g•L~(-1)。分化产生的不定芽在附加IBA、GA_3和活性炭的TE培养基上,幼茎伸长。附加IBA、BA和GA_3的TE培养基上,伸长的不定芽生根形成完整植株。伸长不定芽的最高生根频率是46%。成熟合子胚在直接不定芽原基诱导培养基及直接不定芽分化培养基的作用下,从子叶和胚轴的不同部位产生直接不定芽。直接不定芽发生的最高频率是58.2%。 由成熟合子胚诱导愈伤组织形成过程中的形态学观察表明:在附加2,4-D和BA的DCR愈伤组织诱导培养基上,HB、MA和MC3种基因型中,MA主要在下胚轴形成愈伤组织,MC主要在子叶和胚根形成愈伤组织,HB主要在胚根形成体积较小的愈伤组织。在附加NAA和BA的TE愈伤组织诱导培养基上,HB、MA和MC3种基因型中,MA在单个子叶的顶端形成生长较快的愈伤组织,MC的所有子叶都形成愈伤组织,HB在所有子叶的顶端形成愈伤组织。 石蜡切片观察表明:4类愈伤组织的细胞组成不同.第1类愈伤组织主要由核大、质浓、体积小的园形胚性细胞及核呈柱状或新月形的体积较大的非胚性细胞组成;第2类愈伤组织主要由核大、质浓、体积小的园形胚性细胞组成,第3类愈伤组织主要由体积较大的棒状、葫芦形、新月形、盾片状细胞组成、第4类愈伤组织主要由体积较大的薄壁细胞和细胞壁加厚、细胞间连结紧密、无细胞核的分化细胞组成,第1类愈伤组织上形成的早期原胚的特点是:胚性头部由排列紧密、体积小的园形细胞组成,轮廓十分清晰、呈半圆形,胚柄由排列疏松的长形细胞组成,细胞体积大、细胞中有大的液泡,早期原胚在发育过程中和母体组织保持一定的隔离状态。第2类愈伤组织上形成的不定芽的特点是t结构上为单极性,其维管束和母体组织保持密切联系。扫描电镜观察表明;直接体细胞胚基部和母体组织保持较少的联系,其子叶是直立生长的.直接不定芽基部和母体组织保持较多的联系,其幼叶是向心卷曲生长的。 在培养周期内,基因型HB、MA和MC胚性细胞悬浮培养物的几个生长参数的变化动态相似。鲜重增长高峰在12—15 d,干重增长高峰在15~18 d,细胞体积增长高峰和胚数增长高峰在18—21 d。在培养的18—21 d,培养液中的pH值、电导率和蔗糖浓度接近或降到最低点。在悬浮培养条件下,体细胞胚形成的最佳起始细胞密度是5~6×103个/ml。继代培养时间延长,体细胞胚胎发生能力下降。热激处理促进基因型HB和MA体细胞胚的形成,抑制基因型MC体细胞胚的形成。在悬浮培养物中,观察到了裂生多胚。 对数生长期的火炬松胚性悬浮细胞,在以甘露醇作为渗透压稳定剂的酶混合液Cel-lulase“Onozuka”RS l%+Cellulase“Onozuka”R-10 2.5%+Pectolyase Y-23 0.2%的作用下,原生质体的产量和活力均最高。原生质体在DCR和KM8P两种培养基上形成了体细胞胚(包括胚性胚柄细胞团、早期原胚和后期原胚).体细胞胚形成的最佳起始原生质体密度是7×l04个/ml,最佳ABA浓度是4 mg.L-I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.以MS无机盐+B 5有机成分为基本培养基,附加2,4-D,KT,ZT等激素,以农艺性状良好,抗枯萎病的棉花品种“冀492”为材料,建立了愈伤组织诱导,体细胞胚胎发生和植株再生体系. 2.实验结果表明,2,4-D是诱导愈伤组织产生的促进因子,效果明显好于其它生长素类物质,但是随着培养基中2,4-D浓度的升高,愈伤组织状态也会变差,褐化严重,而且,附加O.lppm 2,4-D,O.lppm K T的培养基是较为合适的培养基.IAA,NAA对愈伤组织的诱导不十分理想,此外,愈伤组织的产生还同外植体,基因型和一些物理条件有关, 胚性愈伤组织的产生,需不断调节培养基中激素浓度,逐步降低2,4 -D浓度,并添加低浓度ZT,胚状体要在去除2,4-D的培养基上才能产生.虽然,2,4-D对于胚性愈伤组织的诱导是必须的,但是却抑制胚状体的发育. 3.培养基中硝态氮和氨态氮比例,激素浓度和种类,活性炭的添加,对于胚状体的萌发和成熟有重要影响,硝酸钾加倍,硝酸铵减半,并附加低浓度ABA和活性炭是胚状体诱导和成苗(去除ABA)的适宜培养基,而附加0.2ppm N A A,0.2ppm ZT和活性炭的M S2培养基是胚状体成熟的适宜培养基.通过对胚性愈伤组织的干燥处理,培养基中低浓度ABA和活性炭的添加,比较有效地抑制了畸形胚的产生,大大地提高了正常胚的比例. 4.对陆地棉“冀4 9 2”的下胚轴和子叶利用含Bt抗虫基因的根农杆菌(AgrobacterIIm tumefrens)进行了遗传转化研究,在筛选培养基上获得了大量生长旺盛的阳性愈伤组织,葡糖酸苷检测结果表明,大部分愈伤组织均有G us基因的表达. 5.通过花粉管通道法,进行了将含有Bt抗虫基因DNA的大肠杆菌质粒导入陆地棉“冀492”的实验,并收获了近1 0,000粒种子,为从大量种子中筛选出抗性种质材料,建立了卡那霉素田间初步筛选法. 6.利用活体压片和石蜡切片技术对体细胞胚胎发生过程和胚状体起源进行了观察,发现胚状体发生主要是通过类合子途径进行的,胚状体可能起源于单细胞. 7.通过对相同培养基上的非胚性愈伤组织,胚性愈伤组织和不同时期胚状体的可溶性蛋白SDS - PAGE电泳分析,发现16KD和50K D蛋白特异性地存在于胚性愈伤和各期胚状体中,该蛋白可作为胚性愈伤组织的筛选标记.对不同发育时期的愈伤组织进行了同工酶和可溶性蛋白的IE F/SD S-PA G E双向电泳分析,结果表明,不同发育时期的愈伤组织同工酶酶谱和可溶性蛋白电泳图谱之间具有较大的差别,分化前期的胚性愈伤组织酶的活性强,种类多,并且有新的蛋白斑点的出现,这些都可能与体细胞胚胎发生相关.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

甘薯[Ipomoea batatm L.]胚性愈伤组织的诱导、生长及分化,受遗传背景、外植体来源、激素配比等多种因素的影响。以徐薯l8叶片为外植体,在Ms附加2mg/l2.4-D的培养基上,诱导、筛选出三种类型的愈伤组织(I型、Ⅱ型、IV型),虽然其来源和培养条件相同,但在外部形态、内部结构、分化途径、分化能力、同工酶酶谱、可溶性蛋白质组成以及DNA分子结构方面,都有显著差异。I型愈伤组织在Ms无激素培养基上分化出体细胞胚,其过氧化物酶及脂酶同工酶与Ⅱ型愈伤组织和lV型愈伤组织相比,酶带的数目、深浅不同,而与胚状体相类似,可以作为不回类型愈伤组织及其分化途径的生理指标。SDS-PAGE电泳分析表明:三种愈伤组织的总蛋白组成也有显著差异。I型愈伤组织与Ⅱ型愈伤组织相比,无论是酶带的数目,还是酶带的扫描高度,都占绝对优势,表明其具有相对较高的蛋白质合成代谢水平。RAPD分析表明,三种类型愈伤组织的遗传基础具有一定差异。在所用的10个随机引物中,引物G3(GAGCCCTCCA)扩增出了显著的多态性,在I型愈伤组织与胚状体中发现两个特异片段,有可能与体细胞胚胎发生过程特异相关。 以I型愈伤组织进行悬浮培养,建立了具有再生能力的胚性悬浮细胞系,并对其鲜重、干重、PCV体积、PH值等生长特性进行了测定,研究了在悬浮培养条件下,2.4-D浓度对体细胞胚胎发生的影响。在MS附加Img/12.4-D的培养基中,细胞呈园球型,细胞质浓厚,细胞核显著,分裂旺盛,转入不含2.4-D的分化培养基中,即可得到大量的游离胚状体:浓度过高(4-8mg/l)或过低(0.5mg/l),都不利于细胞的生长和分化。胞外同工酶研究发现:胞外过氧化物酶水平,随着2.4-D浓度升高、培养时间的延长、细胞生长速度的减缓而降低,随着体胚分化的开始而升高。这种变化趋势表明:2.4-D浓度、过氧化物酶及细胞的生长、分化之间,存在密切联系。蛋白质分析发现,2.4-D的浓度与细胞内可溶性蛋白质组成及含量也密切相关:在无激素培养基中的培养物,其蛋白质电泳图谱与在含有不同浓度2.4-D的培养基中的培养物相比,无论是谱带的数目还是谱带的峰值,都有深刻差异,表明在体胚分化和发育过程中,细胞内进行着旺盛的蛋白质合成代谢。 以胚性悬浮细胞为材料,进行原生质体培养。通过对游离条件的比较研究,发现采用PH值为6.0的E3酶液酶解2小时,可以得到大量具有旺盛活力的原生质体。采用液体浅层一固体平板双层培养方式进行培养,原生质体分裂旺盛,20天后形成肉眼可见的微型愈伤组织,在附加0.5mg/1 2.4-D的继代培养基中,出现根的分化,转入附加0.5mg/12.4-D和Img/16-BA的分化培养基中,有少量不定芽发生,并形成小苗,但无胚状体产生。 以来源于胚性悬浮细胞的原生质体为受体,通过与农杆菌共培养,将苏云金杆菌毒蛋白(Bt)基因导入甘薯细胞,经卡那霉素筛选,得到抗性愈伤组织,并有根的分化。经过PCR检测,证明了Bt基因在甘薯细胞染色体组中的整合。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文以白杄的合子胚为材料,建立了体细胞胚胎发生及其植株再生系统.通过对影响体细胞胚胎发生的主要因素的系统研究,实现了体细胞胚的高频率发生。运用扫描电镜、整体染色封片及石蜡切片等方法全面观察了体细胞胚胎发生过程中的形态学、细胞学及组织化学变化。建立了胚性细胞悬浮系,测定了几个重要生长参数的变化动态,优化了体细胞胚的液体培养条件。采用垂直平板聚丙烯酰胺电泳方法分析了体细胞胚胎发生过程中三种同工酶的变化。通过压片法观察了长期继代过程中胚性愈伤组织细胞及其再生植株根尖细胞染色体数目的变化。具体结果如下: 合子胚在4-6 ℃低温条件下保存1~3个月后,接种于LP+2mg/L2.4-D+lmg/L 6-BA的培养基上,黑暗条件下培养1个月后,产生浅黄色、褐色和白色半透明三种愈伤组织,其中白色半透明愈伤组织是胚性愈伤组织。黑暗中胚性愈伤组织在MS+lmg/L 2,4-D+lmg/L KT的继代培养基上可保持旺盛的增殖能力和分化潜力。当胚性愈伤组织转到MS+5mg/L ABA+50g/L PEG+5mg/L AgN03的分化培养基上,1个月后可产生大量正常的子叶期成熟体细胞胚。成熟体细胞胚在相对湿度为75%的条件下干化20天后,转到含0.5%活性炭的无激素1/2MS基本培养基上,约40天后长出1.5—2.5cm的根,约60天后长出真叶。光,ABA、蔗糖、AgN03 PEG浓度是影响体细胞胚胎发生的主要因素。 在相同的培养条件下,以新产生的子叶期体细胞胚为外植体,也可诱导体细胞胚胎发生。 胚性愈伤组织起源于合子胚子叶和下胚轴的表皮及表皮下的一些细胞。胚性愈伤组织中的一些单个胚性细胞经过第一次分裂产生两个细胞,即胚细胞和胚柄细胞,它们继续进行分裂几次以后形成胚性胚柄团结构。胚性胚柄团在分化培养基上可发育为成熟的子叶期胚。体细胞胚的成熟过程大致可分四个时期:胚性胚柄团、球形胚至鱼雷形胚、子叶前期胚和子叶期成熟胚。通过PAS反应研究后发现,在体细胞胚发育过程中,淀粉粒在胚性胚柄团时期开始积累,至心形胚时期达到积累高峰,子叶胚时期仅在器官原基及其附近细胞肉有淀粉粒分布。结果表明,淀粉是体细胞胚胎发生的一种重要能量来源。 在初始细胞密度为3.O%(鲜重)、摇床转速为150r/min的条件下,用与固体培养基成分相似的液体培养基对胚性愈伤组织进行悬浮培养,胚性愈伤组织的生长率大大提高。在悬浮培养过程中,培养物的鲜重、干重、紧实细胞体积及胚性胚柄团数目依次在6~10天内达到高峰。培养液的pH值和电导率分别在6—8天达到最低点。 胚性和非胚性愈伤组织的三种同工酶酶谱都明显不同;胚性愈伤组织的过氧化物酶和酸性磷酸酯酶活性较高,而非胚性愈伤组织的酯酶活性较高。体细胞胚发育过程中,三种同工酶酶谱都呈规律性变化;j活性都有逐渐增强的趋势,但酸性磷酸酯酶活性到了最后时期又突然下降。 胚性愈伤组织经过长期继代后,生长率和分化能力没有明显变化,但有些细胞内染色体数目发生了无规律的变化( 2n=7—24,2n>28),而再生植株根尖细胞染色体数目比较稳定( 2n=28).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

玉米的单倍体育种,是利用花药培养或孤雌生殖产生单倍体后,进行人工或自然加倍,迅速获得稳定的新品种的育种方法。单倍体育种可以缩短育种时间,单倍体培养体系如果作为转基因的受体,可保证外源基因在后代中稳定遗传,而不发生分离。因此,玉米单倍体育种无论在实践中还是在理论研究方面都具有重大的意义。 本文针对玉米花药培养中长期以来未能解决的诱导频率低、基因型之间差异大、小苗移栽不容易成活等问题,重点探讨了各种因素对玉米花药培养的影响。结果表明:不同基因型之间的诱导频率差异明显,杂交种的诱导频率比纯系高,并选择出诱导频率高达20%的材料“中0198”;接种时花药中的花粉处于单核中期时,其诱导频率最高;采用液体培养基比采用固体培养基诱导频率提高一倍;培养基中加入0.5%的活性炭,可使诱导频率由5.25%提高到9.35%;15%的蔗糖浓度对玉米的花药培养是最适宜的,培养2周后,将培养基的蔗糖浓度从15%调整为10%,将明显提高诱导频率;培养基中高浓度的KT和低浓度的BA有利于诱导体细胞胚的发生,而低浓度的KT和高浓度的BA有利于诱导芽的发生;接种前将花药在4℃条件下进行低温预处理,可将诱导频率从3.13%提高到11.71%;培养基中添加2 mg/l的多效唑,可有效地促进小苗的生根;再生植株于冬季拿到海南种植,可明显提高移栽的成活率。 在玉米孤雌生殖的实验中,将未受粉的玉米雌穗接种在成份为N6 + 2,4-D 1mg/L + NAA 1mg/L + BA 1mg/L + CH 200mg/L + colchicine 2 mg/L + sucrose 5% + agar 0.7% 的培养基上。第一轮实验共接种了三个材料的26个雌穗(约3900个未受精的子房)。每种材料均有单性结实,诱导频率由高到低分别3.06%,2.29%,1.90%。直接获得了5株再生植株,通过染色体检查,发现其中3株为单倍体(n=10),另外2株为二倍体。移栽到土壤中后,有4株成活,其中一株二倍体植株能够正常开花、结实。得到的种子播种于实验田中,表现整齐一致,有纯系的特征,而且出现了2株白化苗。通过石蜡切片初步观察了孤雌生殖的胚胎发生过程,发现胚胎发生是从胚囊里的单倍体细胞起源的。第二、三轮实验又接种了10个基因型的玉米材料,证实了上述结果。 外源基因转导是利用生物技术进行玉米育种的一个有效途径。本文首次尝试了用离体子房注射法对玉米进行基因转化。首先构建了含有开花促进因子基因FPF1及植物选择标记抗除草剂基因pat的植物表达载体pFBR,采用离体注射培养法,取授粉24小时后的玉米雌穗,剥去苞叶,在超净工作台进行微量注射,然后切成小块接种在培养基上,在光照培养箱内培养,3-4周可直接获得种子或小植株。种子萌发后进行植株抗性筛选和分子检测,共注射了3个品种的47个雌穗(约16450个子房)得到再生植株109株,其中经PPT筛选有抗性的植株为23株,占再生植株的21.1%。经PCR检测,13株植株有阳性反应。但Southern杂交检测有杂带出现。出现杂带的原因、RNA水平的分子检测、转基因后代T1代的分子检测和早开花农艺性状的观察,由于时间关系没有完成,还需要进一步的实验。实验初步证明了离体子房注射法对玉米进行基因转化的可行性,而且与田间注射法相比,此方法具有省力省时,容易控制污染,转化效率提高的优点, 克服了玉米培养再生植株受基因型限制的困境, 将为玉米分子育种的基因工程提供更易行的手段。 同时,也为子房较大的其它植物的基因转化提供了方法。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

羊草(Leymus chinensis (Trin.) Tzvel),隶属禾本科赖草属,是欧亚大陆草原区东部重要建群种之一。羊草是牧草之王,是我国比较有优势的战略性生物资源,对我国北方畜牧业的发展以及生态环境的保育均具有重要意义。近年来,由于缺乏科学管理、过度放牧等不利影响,加之羊草本身固有的“三低”问题(即抽穗率低、结实率低、发芽率低)已对羊草生物多样性维持构成了严重的威胁,限制了我国人工草地建设和天然草地的改良及沙化治理的步伐。因此,如何通过细胞、分子生物学以及生物技术手段改良羊草、快速评价和创造新的种质;如何加快育种进程便成为当前亟待解决的问题。本文围绕这些问题开展了系统的研究并取得如下结果: 1. 建立了羊草离体培养再生体系,并研究了影响愈伤组织诱导和植株再生的因素,影响植株再生的主要因素为激素配比和基因型。将3~5mm的幼穗接种到含有2,4-D 0~5.0mg/L的N6基本培养基上,随着2,4-D浓度的变化,愈伤组织诱导率不同,最高诱导率为93.21%(基因型C6)、最低为33.35%(吉生1号);愈伤组织在N6(大)+B5(微)+KT1.0mg/L+BA1.0mg/L的培养基上可以分化出芽,并在1/2MS培养基上生根。羊草基因型W4不同幼穗诱导的愈伤组织在继代培养过程中其生长、褐化死亡等方面存在着差异;在分化培养过程中,不同幼穗的愈伤组织最高分化率为9.24%,最低分化率为5.26%。 2. 对来自同一基因型不同幼穗的愈伤组织中差异表达的基因进行了研究。采用DDRT-PCR技术对其差异表达的基因进行了分离,通过银染技术显示差异片段。将得到的差异片段进行回收、克隆测序,得到两个差异片段序列,经过序列分析表明,其中一个片段是与水稻翻译延伸因子eEF-1基因高度同源;另一差异片段与水稻谷胱甘肽转移酶GST基因高度同源。 3. 建立了羊草遗传转化方法。在获得羊草离体培养再生体系的基础上,采用基因枪法对羊草两个基因型进行转抗除草剂基因(PAT)的研究。对分别来自基因型W4和C3的愈伤组织各1430和1850块进行转化。在附加1.0mg/L PPT的培养基上进行一系列的筛选培养,共获得了23株再生苗,经过生根筛选培养,得到5株抗性苗,3株来自基因型W4,2株来自基因型C3。对5株植株进行PCR和Southern 检测,得到2株阳性苗,均来自基因型W4,对阳性植株经过无性繁殖得到的无性系进行PCR检测及Basta耐受性鉴定,外源基因可以在其无性系稳定遗传并表达,无性系除对Basta具有抗性外,其表型特征与对照无明显区别。