1000 resultados para Dengue - Modelos matemáticos
Resumo:
Dengue has emerged as a frequent problem in international travelers. The risk depends on destination, duration, and season of travel. However, data to quantify the true risk for travelers to acquire dengue are lacking. We used mathematical models to estimate the risk of nonimmune persons to acquire dengue when traveling to Singapore. From the force of infection, we calculated the risk of dengue dependent on duration of stay and season of arrival. Our data highlight that the risk for nonimmune travelers to acquire dengue in Singapore is substantial but varies greatly with seasons and epidemic cycles. For instance, for a traveler who stays in Singapore for 1 week during the high dengue season in 2005, the risk of acquiring dengue was 0.17%, but it was only 0.00423% during the low season in a nonepidemic year such as 2002. Risk estimates based on mathematical modeling will help the travel medicine provider give better evidence-based advice for travelers to dengue endemic countries.
Resumo:
In this work we show that the dengue epidemic in the city of Singapore organized itself into a scale-free network of transmission as the 2000-2005 outbreaks progressed. This scale-free network of cluster comprised geographical breeding places for the aedes mosquitoes, acting as super-spreaders nodes in a network of transmission. The geographical organization of the network was analysed by the corresponding distribution of weekly number of new cases. Therefore, our hypothesis is that the distribution of dengue cases reflects the geographical organization of a transmission network, which evolved towards a power law as the epidemic intensity progressed until 2005. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Background. Chikungunya, an alphavirus of the Togaviridae family, causes a febrile disease transmitted to humans by the bite of infected Aedes mosquitoes. This infection is reaching endemic levels in many Southeast Asian countries. Symptoms include sudden onset of fever, chills, headache, nausea, vomiting, joint pain with or without swelling, low back pain, and rash. According to the World Health Organization, there are 2 billion people living in Aedes-infested areas. In addition, traveling to these areas is popular, making the potential risk of infections transmitted by the bite of infected Aedes mosquitoes very high. Methods. We proposed a mathematical model to estimate the risk of acquiring chikungunya fever in an Aedes-infested area by taking the prevalence of dengue fever into account. The basic reproduction number for chikungunya fever R-0chik can be written as a function of the basic reproduction number of dengue R-0dengue by calculating the ratio R-0chik/R-0dengue. From R-0chik, we estimated the force of infection and the risk of acquiring the disease both for local residents of a dengue-endemic area and for travelers to this area. Results. We calculated that R-0chik is 64.4% that of R-0dengue. The model was applied to a hypothetical situation, namely, estimating the individual risk of acquiring chikungunya fever in a dengue-endemic area, both for local inhabitants (22% in steady state) and for visiting travelers (from 0.31% to 1.23% depending on the time spent in the area). Conclusions. The method proposed based on the output of a dynamical model is innovative and provided an estimation of the risk of infection, both for local inhabitants and for visiting travelers.
Resumo:
Notified cases of dengue infections in Singapore reached historical highs in 2004 (9459 cases) and 2005 (13 817 cases) and the reason for such all increase is still to be established. We apply a mathematical model for dengue infection that takes into account the seasonal variation in incidence, characteristic of dengue fever, and which mimics the 2004-2005 epidemics in Singapore. We simulated a set of possible control strategies and confirmed the intuitive belief that killing adult mosquitoes is the most effective strategy to control an ongoing epidemic. On the other hand, the control of immature forms was very efficient ill preventing the resurgence of dengue epidemics. Since the control of immature forms allows the reduction of adulticide, it seems that the best strategy is to combine both adulticide and larvicide control measures during an outbreak, followed by the maintenance of larvicide methods after the epidemic has subsided. In addition, the model showed that the mixed strategy of adulticide and larvicide methods introduced by the government seems to be very effective in reducing the number of cases in the first weeks after the start of control.
Resumo:
A previous mathematical model explaining dengue in Singapore predicted a reasonable outbreak of about 6500 cases for 2006 and a very mild outbreak with about 2000 cases for 2007. However, only 3051 cases were reported in 2006 while more than 7800 were reported in the first 44 weeks of 2007. We hypothesized that the combination of haze with other local sources of particulate matter had a significant impact on mosquito life expectancy, significantly increasing their mortality rate. To test the hypothesis a mathematical model based on the reproduction number of dengue fever and aimed at comparing the impact of several possible alternative control strategies was proposed. This model also aimed at contributing to the understanding of the causes of dengue resurgence in Singapore in the last decade. The model`s simulation demonstrated that an increase in mosquito mortality in 2006 and either a reduction in mortality or an increase in the carrying capacity of mosquitoes in 2007 explained the patterned observed in Singapore. Based on the model`s simulation we concluded that the fewer than expected number of dengue cases in Singapore in 2006 was caused by an increase in mosquito mortality due to the disproportionate haze affecting the country that year and that particularly favourable environmental conditions in 2007 propitiated mosquitoes with a lower mortality rate, which explains the greater than expected number of dengue cases in 2007. Whether our hypothesis is plausible or not should be debated further.
Resumo:
Background. Clinical manifestations of dengue vary in different areas of endemicity and between specific age groups, whereas predictors of outcome have remained controversial. In Brazil, the disease burden predominantly affects adults, with an increasing trend toward progression to dengue hemorrhagic fever (DHF) noted. Methods. A cohort of adults with confirmed cases of dengue was recruited in central Brazil in 2005. Patients were classified according to the severity of their disease. Associations of antibody responses, viremia levels (as determined by real-time polymerase chain reaction [PCR]), and serotypes (as determined by multiplex PCR) with disease severity were evaluated. Results. Of the 185 symptomatic patients > 14 years of age who had a confirmed case of dengue, 26.5% and 23.2% were classified as having intermediate dengue fever (DF)/ DHF (defined as internal hemorrhage, plasma leakage, manifested signs of shock, and/ or thrombocytopenia [platelet count, <= 50,000 platelets/mm(3)]) and DHF, respectively. The onset of intermediate DF/ DHF and DHF occurred at a late stage of disease, around the period of defervescence. Patients with DHF had abnormal liver enzyme levels, with a > 3-fold increase in aspartate aminotransferase level, compared with the range of values considered to be normal. Overall, 65% of patients presented with secondary infections with dengue virus, with such infection occurring in similar proportions of patients in each of the 3 disease category groups. Dengue virus serotype 3 (DV3) was the predominant serotype, and viremia was detected during and after defervescence among patients with DHF or intermediate DF/ DHF. Conclusions. Viremia was detected after defervescence in adult patients classified as having DHF or intermediate DF/ DHF. Secondary infection was not a predictor of severe clinical manifestation in adults with infected with the DV3 serotype.
Resumo:
Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO2 wafers was achieved under pH 11.6, 50 mM CaCl2, and at 70 degrees C. XG-ALG films presented mean thickness of (16 +/- 2) nun and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAIt adsorbed irreversibly onto XG-ALG forming homogenous monolayers similar to(4 +/- 1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005 mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the present study, BALB/c mice were used to develop a model for the hepatic injury associated to dengue infection. Histological analysis after subcutaneous inoculation with a low viral dose of dengue-2 virus showed Kupffer cell hyperplasia and an increased inflammatory cellular infiltrate next to the bile ducts on days 5, 7 and 14 post-inoculation, mainly characterized by the presence of mononuclear cells. The liver mRNA transcription level of IL-1 beta was highest on the 5th day post-infection (p.i.) and decreased by the 21st day, TNF-alpha showed a peak of mRNA transcription after 14 days p.i. coinciding with the regression of cellular infiltrates and elevated expression of TGF-beta mRNA. Serum AST and ALT levels were slightly elevated at 7 and 14 days post-infection. Dengue-2 RNA levels were undetectable in the liver on any of the days following inoculation. Our observations suggest that, as it is true for humans, the animals undergo a transient and slight liver inflammation, probably due to local cytokine production and cellular infiltration in the liver. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The interaction between dengue virus particles (DENV), sedimentation hemagglutinin particles (SHA), dengue virus envelope protein (Eprot), and solid surfaces was investigated by means of ellipsometry and atomic force microscopy (AFM). The surfaces chosen are bare Si/SiO(2) wafers and Si/SiO(2) wafers covered with concanavalin A (ConA), jacalin (Jac), polystyrene (PS), or poly(styrene sulfonate) (PSS) films. Adsorption experiments at pH 7.2 and pH 3 onto all surfaces revealed that (i) adsorption of DENV particles took place only onto ConA under pH 7.2, because of specific recognition between glycans on DENV surface and ConA binding site; (ii) DENV particles did not attach to any of the surfaces at pH 3, suggesting the presence of positive charges on DENV surface at this pH, which repel the positively charged lectin surfaces; (iii) SHA particles are positively charged at pH 7.2 and pH 3 because they adhered to negatively charged surfaces at pH 7.2 and repelled positively charged layers at pH 3; and (iv) SHA particles carry polar groups on the surface because they attached to silanol surfaces at pH 3 and avoided hydrophobic PS films at pH 3 and pH 7.2. The adsorption behavior of Eprot at pH 7.2 revealed affinity for ConA > Jac > PSS > PS approximate to bare Si/SiO(2) layers. These findings indicate that selectivity of the Eprot adsorption is higher when it is part of virus structure than when it is free in solution. The correlation between surface energy values determined by means of contact angle measurements and DENV, SHA, or Eprot adsorption behavior was used to understand the intermolecular forces at the interfaces. A direct correlation was not found because the contributions from surface energy were probably surpassed by specific contributions.
Resumo:
The fact that the diagnosis of infection with dengue virus is usually made by detecting IgM antibodies during the convalescent phase of the disease interferes with disease management and, consequently, with reducing mortality rates. This study evaluated the sensitivity and specificity of detection of NS1 in samples of patients suspected of acute dengue virus infection in Brazil. The results were used to institute treatment and the sensitivity and specificity of detection of NS1 were compared to the results of detection of IgM, virus isolation, and RT-PCR. Detection of NS1 yielded better results than RTPCR and virus isolation. When considering IgM detection and RT-PCR positive results as ""gold standards,"" the sensitivity and specificity of the NS1 assay were 95.9% and 81.1%, respectively. All patients enrolled in the study were treated promptly and had an uneventful course of the disease. The detection of NS1 provided better results than the diagnostic techniques used currently during the acute phase of disease (RT-PCR and virus isolation). Detection of NS1 is an important tool for the diagnosis of acute dengue infection, particularly in highly endemic areas, allowing for rapid treatment of patients and reduction of disease burden. J. Med. Virol. 82: 1400-1405, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Severe dengue infection in humans causes a disease characterized by thrombocytopenia, increased levels of cytokines, increased vascular permeability, hemorrhage, and shock. Treatment is supportive. Activation of platelet-activating factor (PAF) receptor (PAFR) on endothelial cells and leukocytes induces increase in vascular permeability, hypotension, and production of cytokines. We hypothesized that activation of PAFR could account for the major systemic manifestations of dengue infection. Inoculation of adult mice with an adapted strain of Dengue virus caused a systemic disease, with several features of the infection in humans. In PAFR(-/-) mice, there was decreased thrombocytopenia, hemoconcentration, decreased systemic levels of cytokines, and delay of lethality, when compared with WT infected mice. Treatment with UK-74,505, an orally active PAFR antagonist, prevented the above-mentioned manifestations, as well as hypotension and increased vascular permeability, and decreased lethality, even when started 5 days after virus inoculation. Similar results were obtained with a distinct PAFR antagonist, PCA-4246. Despite decreased disease manifestation, viral loads were similar (PAFR(-/-)) or lower (PAFR antagonist) than in WT mice. Thus, activation of PAFR plays a major role in the pathogenesis of experimental dengue infection, and its blockade prevents more severe disease manifestation after infection with no increase in systemic viral titers, suggesting that there is no interference in the ability of the murine host to deal with the infection. PAFR antagonists are disease-modifying agents in experimental dengue infection.
Resumo:
In an effort to develop a suitable DNA vaccine candidate for dengue, using dengue-3 virus (DENV-3) as a prototype, the genes coding for premembrane (prM) and envelope proteins (E) were inserted into an expression plasmid. After selecting recombinant clones containing prM/E genes, protein expression in the cell monolayer was detected by indirect immunofluorescence and immunoprecipitation assays. After selecting three vaccine candidates (pVAC1DEN3, pVAC2DEN3 and pVAC3DEN3), they were analyzed in vivo to determine their ability to induce a DENV-3-specific immune response. After three immunizations, the spleens of the immunized animals were isolated, and the cells were cultivated to measure cytokine levels by ELISA and used for lymphoproliferation assays. All of the animals inoculated with the recombinant clones induced neutralizing antibodies against DENV-3 and produced a T cell proliferation response after specific stimuli. Immunized and control mice were challenged with a lethal dose of DENV-3 and observed in order to assess their survival capability. The groups that presented the best survival rate after the challenge were the animals vaccinated with the pVAC3DEN3 clones, with an 80% survival rate. Thus, these data show that we have manufactured a vaccine candidate for DENV-3 that is able to induce a specific immune response and protects mice against a lethal challenge.
Resumo:
A DNA vaccine expressing dengue-4 virus premembrane (prM) and envelope (E) genes was produced by inserting these genes into a mammalian expression plasmid (pCI). Following a thorough screening, including confirmation of protein expression in vitro, a recombinant clone expressing these genes was selected and used to immunize BALB/c mice. After 3 immunizations all the animals produced detectable levels of neutralizing antibodies against dengue-4 virus. The cytokines levels and T cell proliferation, detected ex vivo from the spleen of the immunized mice, showed that our construction induced substantial immune stimulation after three doses. Even though the antibody levels, induced by our DNA vaccine, were lower than those obtained in mice immunized with dengue-4 virus the levels of protection were high with this vaccine. This observation is further supported by the fact that 80% of the vaccine immunized group was protected against lethal challenge. In conclusion, we developed a DNA vaccine employing the genes of the prM and E proteins from dengue-4 virus that protects mice against this virus. (C) 2010 Elsevier Ltd. All rights reserved.