967 resultados para Dehydration.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liposomes due to their biphasic characteristic and diversity in design, composition and construction, offer a dynamic and adaptable technology for enhancing drug solubility. Starting with equimolar egg-phosphatidylcholine (PC)/cholesterol liposomes, the influence of the liposomal composition and surface charge on the incorporation and retention of a model poorly water soluble drug, ibuprofen was investigated. Both the incorporation and the release of ibuprofen were influenced by the lipid composition of the multi-lamellar vesicles (MLV) with inclusion of the long alkyl chain lipid (dilignoceroyl phosphatidylcholine (C 24PC)) resulting in enhanced ibuprofen incorporation efficiency and retention. The cholesterol content of the liposome bilayer was also shown to influence ibuprofen incorporation with maximum ibuprofen incorporation efficiency achieved when 4 μmol of cholesterol was present in the MLV formulation. Addition of anionic lipid dicetylphosphate (DCP) reduced ibuprofen drug loading presumably due to electrostatic repulsive forces between the carboxyl group of ibuprofen and the anionic head-group of DCP. In contrast, the addition of 2 μmol of the cationic lipid stearylamine (SA) to the liposome formulation (PC:Chol - 16 μmol:4 μmol) increased ibuprofen incorporation efficiency by approximately 8%. However further increases of the SA content to 4 μmol and above reduced incorporation by almost 50% compared to liposome formulations excluding the cationic lipid. Environmental scanning electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology during dehydration to provide an alternative assay of liposome stability. ESEM analysis clearly demonstrated that ibuprofen incorporation improved the stability of PC:Chol liposomes as evidenced by an increased resistance to coalescence during dehydration. These finding suggest a positive interaction between amphiphilic ibuprofen molecules and the bilayer structure of the liposome. © 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmid DNA pRc/CMV HBS (5.6 kb) (100 microg) encoding the S (small) region of hepatitis B surface antigen was incorporated by the dehydration-rehydration method into liposomes composed of 16 micromol egg phosphatidylcholine (PC), 8 micromol dioleoylphosphatidylcholine (DOPE) and 1, 2-diodeoyl-3-(trimethylammonium)propane (DOTAP) (cationic liposomes) or phosphatidylglycerol (anionic liposomes) in a variety of molar ratios. The method, entailing mixing of small unilamellar vesicles (SUV) with the DNA, followed by dehydration and rehydration, yielded incorporation values of 95-97 and 48-54% of the DNA used, respectively. Mixing of preformed cationic liposomes with 100 microg plasmid DNA also led to high complexation values of 73-97%. As expected, the association of DNA with preformed anionic liposomes was low (9%). Further work with cationic PC/DOPE/DOTAP liposomes attempted to establish differences in the nature of DNA association with the vesicles after complexation and the constructs generated by the process of dehydration/rehydration. Several lines of evidence obtained from studies on vesicle size and zeta-potential, fluorescent microscopy and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, interaction of DNA with preformed cationic SUV as above, or with cationic SUV made of DOPE and DOTAP (1:1 molar ratio; ESCORT Transfection Reagent), leads to the formation of large complexes with externally bound DNA. For instance, such DNA is accessible to and can be dissociated by competing anionic SDS molecules. However, dehydration of the DNA-SUV complexes and subsequent rehydration, generates submicron size liposomes incorporating most of the DNA in a fashion that prevents DNA displacement through anion competition. It is suggested that, in this case, DNA is entrapped within the aqueous compartments, in between bilayers, presumably bound to the cationic charges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of liposomes as carriers of peptide, protein, and DNA vaccines requires simple, easy-to-scale-up technology capable of high-yield vaccine entrapment. Work from this laboratory has led to the development of techniques that can generate liposomes of various sizes, containing soluble antigens such as proteins and particulate antigens (e.g., killed or attenuated bacteria or viruses), as well as antigen-encoding DNA vaccines. Entrapment of vaccines is carried out by the dehydration-rehydration procedure which entails freeze-drying of a mixture of "empty" small unilamellar vesicles and free vaccines. On rehydration, the large multilamellar vesicles formed incorporate up to 90% or more of the vaccine used. When such liposomes are microfluidized in the presence of nonentrapped material, their size is reduced to about 100 nm in diameter, with much of the originally entrapped vaccine still associated with the vesicles. A similar technique applied for the entrapment of particulate antigens (e.g., Bacillus subtilis spores) consists of freeze-drying giant vesicles (4-5 microm in diameter) in the presence of spores. On rehydration and sucrose gradient fractionation of the suspension, up to 30% or more of the spores used are associated with generated giant liposomes of similar mean size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a clinical need for a more effective vaccine against hepatitis B, and in particular vaccines that may be suitable for therapeutic administration. This study assesses the potential of cationic surfactant vesicle based formulations using two agents; the cationic amine containing [N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) or dimethyl dioctadecylammonium bromide (DDA) with hepatitis B surface antigen (HBsAg). Synthetic mycobacterial cord factor, trehalose 6,6′-dibehenate (TDB) has been used as an adjuvant and the addition of 1-monopalmitoyl glycerol (C16:0) (MP) and cholesterol (Chol) to DDA-TDB is assessed for its potential to facilitate formation of dehydration-rehydration vesicles (DRV) at room temperature, and the effect of this on immune responses. A DRV formulation is directly compared to an adsorbed formulation of the same composition and preparation protocol (MP:dioleoyl phosphoethanolamine (DOPE):Chol:DC-Chol) and the direct substitution of MP with phosphatidylcholine (PC) is also compared in DRV antigen-entrapped formulations. MP and Chol were shown to facilitate the use of DDA-TDB in DRV formulations prepared at room temperature, whilst there was marginal alteration of immunogenicity (a reduction in HBsAg-specific IL-2). The HBsAg adsorbed DRV formulation was not significantly different from the HBsAg entrapped DRV formulation. Overall, DDA formulations incorporating TDB showed markedly increased antigen specific splenocyte proliferation and elicited cytokine production concomitant with a strong T cell driven response, delineating formulations that may be useful for further evaluation of their clinical potential. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorus is a key plant nutrient and as such, is incorporated into growing biomass in small amounts. This paper examines the influence of phosphorus, present in either acid (HPO) or salt ((NH)PO) form, on the pyrolysis behaviour of both Miscanthus × giganteus, and its cell wall components, cellulose, hemicellulose (xylan) and lignin (Organosolv). Pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) is used to examine the pyrolysis products during thermal degradation, and thermogravimetric analysis (TGA) is used to examine the distribution of char and volatiles. Phosphorus salts are seen to catalyse the pyrolysis and modify the yields of products, resulting in a large increase in char yield for all samples, but particularly for cellulose and Miscanthus. The thermal degradation processes of cellulose, xylan and Miscanthus samples occur in one step and the main pyrolysis step is shifted to lower temperature in the presence of phosphorus. A small impact of phosphorus was observed in the case of lignin char yields and the types of pyrolysis decomposition products produced. Levoglucosan is a major component produced in fast pyrolysis of cellulose. Furfural and levoglucosenone become more dominant products upon P-impregnation pointing to new rearrangement and dehydration routes. The P-catalysed xylan decomposition route leads to a much simpler mixture of products, which are dominated by furfural, 3-methyl-2-cyclopenten-1-one and one other unconfirmed product, possibly 3,4-dihydro-2-methoxy-2H-pyran or 4-hydroxy-5,6-dihydro-(2H)-pyran-2-one. Phosphorus-catalysed lignin decomposition also leads to a modified mixture of tar components and desaspidinol as well as other higher molecular weight component become more dominant relative to the methoxyphenyl phenols, dimethoxy phenols and triethoxy benzene. Comparison of the results for Miscanthus lead to the conclusion that the understanding of the fast pyrolysis of biomass can, for the most part, be gained through the study of the individual cell wall components, provided consideration is given to the presence of catalytic components such as phosphorus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic liposomes have been extensively explored for their efficacy in delivering nucleic acids, by offering the ability to protect plasmid DNA against degradation, promote gene expression and, in the case of DNA vaccines, induce both humoural and cellular immune responses. DNA vaccines may also offer advantages in terms of safety, but they are less effective and need an adjuvant to enhance their immunogenicity. Therefore, cationic liposomes can be utilised as delivery systems and/or adjuvants for DNA vaccines to stimulate stronger immune responses. To explore the role of liposomal systems within plasmid DNA delivery, parameters such as the effect of lipid composition, method of liposome preparation and presence of electrolytes in the formulation were investigated in characterisation studies, in vitro transfection studies and in vivo biodistribution and immunisation studies. Liposomes composed of 1,2-dioleoyl-sn-glycero 3-phosphoethanolamine (DOPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3- trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method and hydrated in aqueous media with or without presence of electrolytes. Whilst the in vitro transfection efficiency of all liposomes resulted to be higher than Lipofectin, DSTAP-based liposomes showed significantly higher transfection efficiency than DOTAP-based formulations. Furthermore, upon intramuscular injection of liposomal DNA vaccines, DSTAP-based liposomes showed a significantly stronger depot effect at the injection site. This could explain the result of heterologous immunisation studies, which revealed DSTAP-based liposomal vaccines induce stronger immune responses compared to DOTAP-based formulations. Previous studies have shown that having more liposomally associated antigen at the injection site would lead to more drainage of them into the local lymph nodes. Consequently, this would lead to more antigens being presented to antigen presenting cells, which are circulating in lymph nodes, and this would initiate a stronger immune response. Finally, in a comparative study, liposomes composed of dimethyldioctadecylammonium bromide (DDA) in combination with DOPE or immunostimulatory molecule of trehalose 6,6-dibehenate (TDB) were prepared and investigated in vitro and in vivo. Results showed that although DDA:TDB is not able to transfect the cells efficiently in vitro, this formulation induces stronger immunity compared to DDA:DOPE due to the immunostimulatory effects of TDB. This study demonstrated, while the presence of electrolytes did not improve immune responses, small unilamellar vesicle (SUV) liposomes induced stronger humoural immune responses compared to dehydration rehydration vesicle (DRV) liposomes. Moreover, lipid composition was shown to play a key role in in vitro and in vivo behaviour of the formulations, as saturated cationic lipids provided stronger immune responses compared to unsaturated lipids. Finally, heterologous prime/boost immunisation promoted significantly stronger immune responses compared to homologous vaccination of DNA vaccines, however, a single immunisation of subunit vaccine provoked comparable levels of immune response to the heterologous regimen, suggesting more immune efficiency for subunit vaccines compared to DNA vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermo-chemical conversion of green microalgae Chlamydomonas reinhardtii wild type (CCAP 11/32C), its cell wall deficient mutant C. reinhardtii CW15 (CCAP 11/32CW15) and Chlorella vulgaris (CCAP 211/11B) as well as their proteins and lipids was studied under conditions of intermediate pyrolysis. The microalgae were characterised for ultimate and gross chemical composition, lipid composition and extracted products were analysed by Thermogravimetric analysis (TG/DTG) and Pyrolysis-gaschromatography/mass-spectrometry (Py-GC/MS). Proteins accounted for almost 50% and lipids 16-22 % of dry weight of cells with little difference in the lipid compositions between the C. reinhardtii wild type and the cell wall mutant. During TGA analysis, each biomass exhibited three stages of decomposition, namely dehydration, devolatilization and decomposition of carbonaceous solids. Py-GC/MS analysis revealed significant protein derived compounds from all algae including toluene, phenol, 4-methylphenol, 1H-indole, 1H-indole-3methyl. Lipid pyrolysis products derived from C. reinhardtii wild type and C. reinhardtii CW15 were almost identical and reflected the close similarity of the fatty acid profiles of both strains. Major products identified were phytol and phytol derivatives formed from the terpenoid chain of chlorophyll, benzoic acid alkyl ester derivative, benzenedicarboxylic acid alkyl ester derivative and squalene. In addition, octadecanoic acid octyl ester, hexadecanoic acid methyl ester and hydrocarbons including heptadecane, 1-nonadecene and heneicosane were detected from C. vulgaris pyrolysed lipids. These results contrast sharply with the types of pyrolytic products obtained from terrestrial lignocellulosic feedstocks and reveal that intermediate pyrolysis of algal biomass generates a range of useful products with wide ranging applications including bio fuels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium glucose co-transporter-2 (SGLT2) inhibitors offer a novel approach to treat diabetes by reducing hyperglycaemia via increased glucosuria. This approach reduces renal glucose reabsorption in the proximal renal tubules providing an insulin-independent mechanism to lower blood glucose. The glucuretics are advanced in clinical development and dapagliflozin has received most extensive study. Once daily dapaglifolozin as monotherapy or as add-on to metformin for 12-24 weeks in type 2 diabetic patients (baseline HbA 8-9%) reduced HbA by about 0.5-1%, accompanied by weight loss (2-3 kg) and without significant risk of hypoglycaemia. Dapagliflozin has reduced insulin requirement and improved glycaemic control without weight gain in insulin-treated patients. A mild osmotic diuresis associated with glucuretic therapy may account for a small increase in haematocrit (1-2%) and reduced blood pressure (2-5 mmHg). Dehydration and altered electrolyte balance have not been encountered. Urinary tract and genital infections increased in most studies with dapagliflozin, but were typically mild - resolving with selfmedication or standard intervention. Thus glucuretics provide a novel insulin-independent approach for control of hyperglycaemia which does not incur hypoglycaemia, promotes weight loss, may reduce blood pressure and offers compatibility with other glucose-lowering agents. © 2010 The Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundamental analytical pyrolysis studies of biomass from Polar seaweeds, which exhibit a different biomass composition than terrestrial and micro-algae biomass were performed via thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass-spectrometry (Py-GC/MS). The main reason for this study is the adaptation of these species to very harsh environments making them an interesting source for thermo-chemical processing for bioenergy generation and production of biochemicals via intermediate pyrolysis. Several macroalgal species from the Arctic region Kongsfjorden, Spitsbergen/Norway (Prasiola crispa, Monostroma arcticum, Polysiphonia arctica, Devaleraea ramentacea, Odonthalia dentata, Phycodrys rubens, Sphacelaria plumosa) and from the Antarctic peninsula, Potter Cove King George Island (Gigartina skottsbergii, Plocamium cartilagineum, Myriogramme manginii, Hymencladiopsis crustigena, Kallymenia antarctica) were investigated under intermediate pyrolysis conditions. TGA of the Polar seaweeds revealed three stages of degradation representing dehydration, devolatilization and decomposition of carbonaceous solids. The maximum degradation temperatures Prasiola crispa were observed within the range of 220-320 C and are lower than typically obtained by terrestrial biomass, due to divergent polysaccharide compositions. Biochar residues accounted for 33-46% and ash contents of 27-45% were obtained. Identification of volatile products by Py-GC/MS revealed a complexity of generated chemical compounds and significant differences between the species. A widespread occurrence of aromatics (toluene, styrene, phenol and 4-methylphenol), acids (acetic acid, benzoic acid alkyl ester derivatives, 2-propenoic acid esters and octadecanoic acid octyl esters) in pyrolysates was detected. Ubiquitous furan-derived products included furfural and 5-methyl-2-furaldehyde. As a pyran-derived compound maltol was obtained by one red algal species (P. rubens) and the monosaccharide d-allose was detected in pyrolysates in one green algal (P. crispa). Further unique chemicals detected were dianhydromannitol from brown algae and isosorbide from green algae biomass. In contrast, the anhydrosugar levoglucosan and the triterpene squalene was detected in a large number of pyrolysates analysed. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The telescopic conversion of glucose to fructose and then 5-hydroxymethylfurfural (5-HMF), the latter a potential, bio-derived platform chemical feedstock, has been explored over a family of bifunctional sulfated zirconia catalysts possessing tuneable acid-base properties. Characterisation by acid-base titration, XPS, XRD and Raman reveal that submonolayer SO4 coverages offer the ideal balance of basic and Lewis-Brønsted acid sites required to respectively isomerise glucose to fructose, and subsequently dehydrate fructose to 5-HMF. A constant acid site normalised turnover frequency is observed for fructose dehydration to 5-HMF, confirming a common Brønsted acid site is responsible for this transformation. This journal is © The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The telescopic conversion of glucose to fructose and then 5-hydroxymethylfurfural (5-HMF), the latter a potential, bio-derived platform chemical feedstock, has been explored over a family of bifunctional sulfated zirconia catalysts possessing tuneable acid-base properties. Characterisation by acid-base titration, XPS, XRD and Raman reveal that submonolayer SO4 coverages offer the ideal balance of basic and Lewis-Brønsted acid sites required to respectively isomerise glucose to fructose, and subsequently dehydrate fructose to 5-HMF. A constant acid site normalised turnover frequency is observed for fructose dehydration to 5-HMF, confirming a common Brønsted acid site is responsible for this transformation. This journal is © The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Worldwide concern over dwindling fossil fuel reserves and impact of CO2 emissions on climate change means there is an urgent need to reduce our dependence on oil based sources of fuels and chemicals. The direct conversion of lignocellulosic derived glucose to 5-Hydroxymethylfurfural (5-HMF) is an attractive process for the production of chemicals and fuels but requires a bi-functional catalyst with acid-base or Lewis-Brönsted sites which can operate efficiently in the aqueous phase. While conventionally viewed as a superacid, the potential for tuning the acid strength in SO4/ZrO2 and potential for coupling bi-functional ZrO2-SO4/ZrO2 sites at low sulfate contents have been overlooked. Our previous work has shown effective tuning of the acid strength in SO4/ZrO2 can be used to direct selectivity in terpene isomerisation thus we rationalised control over HMF selectivity could achieved in a similar fashion. Here we report on a systematic study of the impact of acid properties of SO4/ZrO2 catalysts on the conversion of C6 sugars to 5-HMF in aqueous media and correlate the surface acid-base properties with glucose isomerisation and dehydration capabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robust, bifunctional catalysts comprising Rh(CO)(Xantphos) exchanged phosphotungstic acids of general formulas [Rh(CO)(Xantphos)]+n[H3–nPW12O40]n− have been synthesized over silica supports which exhibit tunable activity and selectivity toward direct vapor phase methanol carbonylation. The optimal Rh:acid ratio = 0.5, with higher rhodium concentrations increasing the selectivity to methyl acetate over dimethyl ether at the expense of lower acidity and poor activity. On-stream deactivation above 200 °C reflects Rh decomplexation and reduction to Rh metal, in conjunction with catalyst dehydration and loss of solid acidity because of undesired methyl acetate hydrolysis, but can be alleviated by water addition and lower temperature operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF). Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The grafting and sulfation of zirconia conformal monolayers on SBA-15 to create mesoporous catalysts of tunable solid acid/base character is reported. Conformal zirconia and sulfated zirconia (SZ) materials exhibit both Brönsted and Lewis acidity, with the Brönsted/Lewis acid ratio increasing with film thickness and sulfate content. Grafted zirconia films also exhibit amphoteric character, whose Brönsted/Lewis acid site ratio increases with sulfate loading at the expense of base sites. Bilayer ZrO2/SBA-15 affords an ordered mesoporous material with a high acid site loading upon sulfation and excellent hydrothermal stability. Catalytic performance of SZ/SBA-15 was explored in the aqueous phase conversion of glucose to 5-HMF, delivering a 3-fold enhancement in 5-HMF productivity over nonporous SZ counterparts. The coexistence of accessible solid basic/Lewis acid and Brönsted acid sites in grafted SZ/SBA-15 promotes the respective isomerization of glucose to fructose and dehydration of reactively formed fructose to the desired 5-HMF platform chemical.