962 resultados para Deficient


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic bacterium that infects patients with cystic fibrosis. B. cenocepacia strains J2315, K56-2, C5424, and BC7 belong to the ET12 epidemic clone, which is transmissible among patients. We have previously shown that transposon mutants with insertions within the O antigen cluster of strain K56-2 are attenuated for survival in a rat model of lung infection. From the genomic DNA sequence of the O antigen-deficient strain J2315, we have identified an O antigen lipopolysaccharide (LPS) biosynthesis gene cluster that has an IS402 interrupting a predicted glycosyltransferase gene. A comparison with the other clonal isolates revealed that only strain K56-2, which produced O antigen and displayed serum resistance, lacked the insertion element inserted within the putative glycosyltransferase gene. We cloned the uninterrupted gene and additional flanking sequences from K56-2 and conjugated this plasmid into strains J2315, C5424, and BC7. All the exconjugants recovered the ability to form LPS O antigen. We also determined that the structure of the strain K56-2 O antigen repeat, which was absent from the LPS of strain J2315, consisted of a trisaccharide unit made of rhamnose and two N-acetylgalactosamine residues. The complexity of the gene organization of the K56-2 O antigen cluster was also investigated by reverse transcription-PCR, revealing several transcriptional units, one of which also contains genes involved in lipid A-core oligosaccharide biosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleotide-binding oligomerization domain protein 1 (NOD1) belongs to a family that includes multiple members with NOD and leucine-rich repeats in vertebrates and plants. NOD1 has been suggested to have a role in innate immune responses, but the mechanism involved remains unknown. Here we report that NOD1 mediates the recognition of peptidoglycan derived primarily from Gram-negative bacteria. Biochemical and functional analyses using highly purified and synthetic compounds indicate that the core structure recognized by NOD1 is a dipeptide, gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP). Murine macrophages deficient in NOD1 did not secrete cytokines in response to synthetic iE-DAP and did not prime the lipopolysaccharide response. Thus, NOD1 mediates selective recognition of bacteria through detection of iE-DAP-containing peptidoglycan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the involvement of Tol proteins in the surface expression of lipopolysaccharide (LPS). tolQ, -R, -A and -B mutants of Escherichia coli K-12, which do not form a complete LPS-containing O antigen, were transformed with the O7+ cosmid pJHCV32. The tolA and tolQ mutants showed reduced O7 LPS expression compared with the respective isogenic parent strains. No changes in O7 LPS expression were found in the other tol mutants. The O7-deficient phenotype in the tolQ and tolA mutants was complemented with a plasmid encoding the tolQRA operon, but not with a similar plasmid containing a frameshift mutation inactivating tolA. Therefore, the reduction in O7 LPS was attributed to the lack of a functional tolA gene, caused either by a direct mutation of this gene or by a polar effect on tolA gene expression exerted by the tolQ mutation. Reduced surface expression of O7 LPS was not caused by changes in lipid A-core structure or downregulation of the O7 LPS promoter. However, an abnormal accumulation of radiolabelled mannose was detected in the plasma membrane. As mannose is a sugar unique to the O7 subunit, this result suggested the presence of accumulated O7 LPS biosynthesis intermediates. Attempts to construct a tolA mutant in the E. coli O7 wild-type strain VW187 were unsuccessful, suggesting that this mutation is lethal. In contrast, a polar tolQ mutation affecting tolA expression in VW187 caused slow growth rate and serum sensitivity in addition to reduced O7 LPS production. VW187 tolQ cells showed an elongated morphology and became permeable to the membrane-impermeable dye propidium iodide. All these phenotypes were corrected upon complementation with cloned tol genes but were not restored by complementation with the tolQRA operon containing the frameshift mutation in tolA. Our results demonstrate that the TolA protein plays a critical role in the surface expression of O antigen subunits by an as yet uncharacterized involvement in the processing of O antigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The O-specific lipopolysaccharide side chains of Escherichia coli O7 and Shigella boydii type 12 possess similar but not identical chemical structures. We investigated the genetic relatedness between the O-specific side chain genes in members of these two species. Examination of outer membrane protein and lipopolysaccharide (LPS) banding patterns demonstrated that five strains which had been identified as S. boydii type 12 fell into two clonal groups, SB1 and SB2. Hybridizations with O7-specific radiolabeled probes derived from the chromosomal DNA of an E. coli O7 strain detected identical fragments among the three SB1 strains of S. boydii type 12 and the two E. coli O7 reference isolates. The two other S. boydii type 12 strains, which belonged to the SB2 clone, did not show homologies with the O7 probe under high-stringency conditions of hybridization. The homology between the O7 and type 12 LPS gene regions from the SB1 strains was further confirmed by the construction of O-specific side chain-deficient mutations in these strains by homologous recombination of a suicide plasmid containing O7-specific DNA sequences. Immunoblot experiments with O7 antiserum gave a weak cross-reaction with LPS purified from the SB2 strains but a very strong cross-reaction with the LPS from SB1 isolates. Antiserum raised to one of the SB2 strains cross-reacted only with S. boydii type 12 LPS from the SB1 clone but failed to react with O7 LPS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently cloned biosynthesis genes for the O7-lipopolysaccharide (O7-LPS) side chain from the Escherichia coli K-1 strain VW187 (M. A. Valvano, and J. H. Crosa, Infect. Immun. 57:937-943, 1989). To characterize the O7-LPS region, the recombinant cosmids pJHCV31 and pJHCV32 were mutagenized by transposon mutagenesis with Tn3HoHo1, which carries a promoterless lac operon and can therefore generate lacZ transcriptional fusions with target DNA sequences. Cells containing mutated plasmids were examined for their ability to react by coagglutination with O7 antiserum. The LPS pattern profiles of the insertion mutants were also investigated by electrophoresis of cell envelope fractions, followed by silver staining and immunoblotting analysis. These experiments identified three phenotypic classes of mutants and defined a region in the cloned DNA of about 14 kilobase pairs that is essential for O7-LPS expression. Analysis of beta-galactosidase production by cells carrying plasmids with transposon insertions indicated that transcription occurs in only one direction along the O7-LPS region. In vitro transcription-translation experiments revealed that the O7-LPS region encodes at least 16 polypeptides with molecular masses ranging from 20 to 48 kilodaltons. Also, the O7-LPS region in VW187 was mutagenized by homologous recombination with subsets of the cloned O7-LPS genes subcloned into a suicide plasmid vector. O7-LPS-deficient mutants of VW187 were complemented with pJHCV31 and pJHCV32, confirming that these cosmids contain genetic information that is essential for the expression of the O7 polysaccharide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Folate and vitamin B-6 act in generating methyl groups for homocysteine remethylation, but the kinetic effects of folate or vitamin B-6 deficiency are not known. We used an intravenous primed, constant infusion of stable isotope-labeled serine, methionine, and leucine to investigate one-carbon metabolism in healthy control (n = 5), folate-deficient (n = 4), and vitamin B-6-deficient (n = 5) human subjects. The plasma homocysteine concentration in folate-deficient subjects [15.9 +/-2.1 (SD) mu mol/l] was approximately two times that of control (7.4 +/-1.7 mmol/l) and vitamin B-6-deficient (7.7 +/-2.1 mmol/l) subjects. The rate of methionine synthesis by homocysteine remethylation was depressed (P = 0.027) in folate deficiency but not in vitamin B-6 deficiency. For all subjects, the homocysteine remethylation rate was not significantly associated with plasma homocysteine concentration (r = -0.44, P = 0.12). The fractional synthesis rate of homocysteine from methionine was positively correlated with plasma homocysteine concentration (r = 0.60, P = 0.031), and a model incorporating both homocysteine remethylation and synthesis rates closely predicted plasma homocysteine levels (r = 0.85, P = 0.0015). Rates of homocysteine remethylation and serine synthesis were inversely correlated (r = -0.89, P < 0.001). These studies demonstrate distinctly different metabolic consequences of vitamin B-6 and folate deficiencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein-protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis.
Results: Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress.
Conclusions: Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suppressor of cytokine signaling (SOCS) proteins are key regulators of CD4+ T cell differentiation, and in particular, we have recently shown that SOCS2 inhibits the development of Th2 cells and allergic immune responses. Interestingly, transcriptome analyses have identified SOCS2 as being preferentially expressed in both natural regulatory T cells (Tregs) and inducible Tregs (iTregs); however, the role of SOCS2 in Foxp3+ Treg function or development has not been fully elucidated. In this study, we show that despite having no effect on natural Treg development or function, SOCS2 is highly expressed in iTregs and required for the stable expression of Foxp3 in iTregs in vitro and in vivo. Indeed, SOCS2-deficient CD4+ T cells upregulated Foxp3 following in vitro TGF-ß stimulation, but failed to maintain stable expression of Foxp3. Moreover, in vivo generation of iTregs following OVA feeding was impaired in the absence of SOCS2 and could be rescued in the presence of IL-4 neutralizing Ab. Following IL-4 stimulation, SOCS2-deficient Foxp3+ iTregs secreted elevated IFN-? and IL-13 levels and displayed enhanced STAT6 phosphorylation. Therefore, we propose that SOCS2 regulates iTreg stability by downregulating IL-4 signaling. Moreover, SOCS2 is essential to maintain the anti-inflammatory phenotype of iTregs by preventing the secretion of proinflammatory cytokines. Collectively, these results suggest that SOCS2 may prevent IL-4-induced Foxp3+ iTreg instability. Foxp3+ iTregs are key regulators of immune responses at mucosal surfaces; therefore, this dual role of SOCS2 in both Th2 and Foxp3+ iTregs reinforces SOCS2 as a potential therapeutic target for Th2-biased diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Respiratory infections caused by Klebsiella pneumoniae are characterized by high rates of mortality and morbidity. Management of these infections is often difficult, due to the high frequency of strains that are resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. In the present study, we investigated the role of the K. pneumoniae AcrRAB operon in antimicrobial resistance and virulence by using isogenic knockouts deficient in the AcrB component and the AcrR repressor, both derived from the virulent strain 52145R. We demonstrated that the AcrB knockout was more susceptible, not only to quinolones, but also to other antimicrobial agents, including beta-lactams, than the wild-type strain and the AcrR knockout. We further showed that the AcrB knockout was more susceptible to antimicrobial agents present in human bronchoalveolar lavage fluid and to human antimicrobial peptides than the wild-type strain and the AcrR knockout. Finally, the AcrB knockout exhibited a reduced capacity to cause pneumonia in a murine model, in contrast to the wild-type strain. The results of this study suggest that, in addition to contributing to the multidrug resistance phenotype, the AcrAB efflux pump may represent a novel virulence factor required for K. pneumoniae to resist innate immune defense mechanisms of the lung, thus facilitating the onset of pneumonia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) of Yersinia enterocolitica O:3 has an inner core linked to both the O-antigen and to an outer core hexasaccharide that forms a branch. The biological role of the outer core was studied using polar and non-polar mutants of the outer core biosynthetic operon. Analysis of O-antigen- and outer core-deficient strains suggested a critical role for the outer core in outer membrane properties relevant in resistance to antimicrobial peptides and permeability to hydrophobic agents, and indirectly relevant in resistance to killing by normal serum. Wild-type bacteria but not outer core mutants killed intragastrically infected mice, and the intravenous lethal dose was approximately 10(4)-fold higher for outer core mutants. After intragastric infection, outer core mutants colonized Peyer's patches and invaded mesenteric lymph nodes, spleen and liver, and induced protective immunity against wild-type bacteria. In mice co-infected intragastrically with an outer core mutant-wild type mixture, both strains colonized Peyer's patches similarly during the first 2 days, but the mutant was much less efficient in colonizing deeper organs and was cleared faster from Peyer's patches. The results demonstrate that outer core is required for Y. enterocolitica O:3 full virulence, and strongly suggest that it provides resistance against defence mechanisms (most probably those involving bactericidal peptides).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endogenous electric fields (EF) have long been known to influence cell behaviour during development, neural cell tropism, wound healing and cell behaviour generally. The effect is based on short circuiting of electrical potential differences across cell and tissue boundaries generated by ionic segregation. Recent in vitro and in vivo studies have shown that EF regulate not only cell movement but orientation of cells during mitosis, an effect which may underlie shaping of tissues and organs. The molecular basis of this effect is founded on receptor-mediated cell signalling events and alterations in cytoskeletal function as revealed in studies of gene deficient cells. Remarkably, not all cells respond directionally to EF in the same way and this has consequences, for instance, for lens development and vascular remodelling. The physical basis of EF effect may be related to changes induced in 'bound water' at the cell surface, whose organisation in association with trans-membrane proteins (e.g. receptors) is disrupted when EF are generated. Copyright © 2007 S. Karger AG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that CCL2/CX3CR1 deficient mice on C57BL/6N background (with rd8 mutation) have an early onset (6 weeks) of spontaneous retinal degeneration. In this study, we generated CCL2(-/-)CX3CR1(GFP/GFP) mice on the C57BL/6J background. Retinal degeneration was not detected in CCL2(-/-)CX3CR1(GFP/GFP) mice younger than 6 months. Patches of whitish/yellowish fundus lesions were observed in 17~60% of 12-month, and 30~100% of 18-month CCL2(-/-)CX3CR1(GFP/GFP) mice. Fluorescein angiography revealed no choroidal neovascularisation in these mice. Patches of retinal pigment epithelium (RPE) and photoreceptor damage were detected in 30% and 50% of 12- and 18-month CCL2(-/-)CX3CR1(GFP/GFP) mice respectively, but not in wild-type mice. All CCL2(-/-)CX3CR1(GFP/GFP) mice exposed to extra-light (~800lux, 6 h/day, 6 months) developed patches of retinal atrophy, and only 20-25% of WT mice which underwent the same light treatment developed atrophic lesions. In addition, synaptophysin expression was detected in the outer nucler layer (ONL) of area related to photoreceptor loss in CCL2(-/-)CX3CR1(GFP/GFP) mice. Markedly increased rhodopsin but reduced cone arrestin expression was observed in retinal outer layers in aged CCL2(-/-)CX3CR1(GFP/GFP) mice. GABA expression was reduced in the inner retina of aged CCL2(-/-)CX3CR1(GFP/GFP) mice. Significantly increased Müller glial and microglial activation was observed in CCL2(-/-)CX3CR1(GFP/GFP) mice compared to age-matched WT mice. Macrophages from CCL2(-/-)CX3CR1(GFP/GFP) mice were less phagocytic, but expressed higher levels of iNOS, IL-1ß, IL-12 and TNF-a under hypoxia conditions. Our results suggest that the deletions of CCL2 and CX3CR1 predispose mice to age- and light-mediated retinal damage. The CCL2/CX3CR1 deficient mouse may thus serve as a model for age-related atrophic degeneration of the RPE, including the dry type of macular degeneration, geographic atrophy.