1000 resultados para Deep Sea Drilling Project


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tholeiitic basalts and microdolerites that comprise the Cretaceous igneous complex in the Nauru Basin in the western equatorial Pacific have moderate ranges in initial 87Sr/86Sr (0.70347 - 0.70356), initial 143Nd/144Nd (0.51278 - 0.51287), and measured 206Pb/204Pb (18.52 - 19.15), 207Pb/204Pb (15.48 - 15.66) and 208Pb/204Pb (38.28 - 38.81). These isotopic ratios overlap with those of both oceanic island basalts (OIB) and South Atlantic and Indian mid-ocean ridge basalts (MORB). However, the petrography, mineralogy, and bulk rock chemistry of the igneous complex are more similar to MORB than to OIB. Also, the rare earth element contents of Nauru Basin igneous rocks are uniformly depleted in light elements (La/Sm(ch) < 1) indicative of a mantle source compositionally similar to that of MORB. These results suggest that the igneous complex is the top of the original ocean crust in the Nauru Basin, and that the notion that the crust must be 15 to 35 m.y. older based on simple extrapolation and identification of the M-sequence magnetic lineations (Larson et al., 1981, doi:10.2973/dsdp.proc.61.1981; Moberly et al., 1985, doi:10.2973/dsdp.proc.81.1984) may be invalid because of a more complicated tectonic setting. The igneous complex most probably was extruded from an ocean ridge system located near the anomalously hot, volcanically active, and isotopically distinct region in the south central Pacific which has been in existence since c. 120 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty-four piston core sediment samples and 13 sediments and 3 basalts from DSDP Leg 78 Site 543 were analyzed for Sr, Nd and Pb isotopic compositions. The results show sediment with highly radiogenic Pb (206Pb/204Pb up to 19.8) and rather radiogenic Sr and unradiogenic Nd has been deposited in the region since the Cretaceous. The source of this sediment is probably the Archean Guiana Highland, which is drained by the Orinoco River. Pb and Sr isotopic compositions and sediment thickness decrease and 143Nd/144Nd increases northward due to a decrease in turbiditic component. This decrease is partly due to the damming action of basement ridges. Rare earth concentrations in the sediments are somewhat low, due to the abundance of detrital and biogenic components in the sediment and rapid sedimentation rates. Both positive and negative Ce anomalies occur in the surface sediments, but only positive Ce anomalies occur in the Site 543 sediments. It is unlikely that sediment subducted to the source region of Lesser Antilles arc magmas could be the cause of negative Ce anomalies in those magmas. Isotopic compositions of Site 543 basalts show some effect of contamination by seawater-basalt reaction products and sediments. Beyond this, however, they are typical of "normal" depleted MORB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chert, Porcellanite, and other silicified rocks formed in response to high heat flow in the lower 50 meters of 275 meters of sediments at Deep Sea Drilling Project Site 504, Costa Rica Rift. Chert and Porcellanite partly or completely replaced upper Miocene chalk and limestone. Silicified rock occurs as nodules, laminae, stringers, and casts of burrows, and consists of quartz and opal-CT in varying amounts, associated with secondary calcite. The secondary silica was derived from dissolution of opal-A (biogenic silica), mostly diatom frustules and radiolarian tests. Temperature data obtained at the site indicate that transformation of opal-A to opal-CT began at about 50°C, and transformation from opal-CT to quartz at about 55°C. Quartz is most abundant close to basement basalts. These silica transformations occurred over the past 1 m.y., and took place so rapidly that there was incomplete ordering of opal-CT before transformation to quartz; opal-CT formed initially with an uncommonly wide d spacing. Quartz shows poor crystallinity. Chemical data show that the extensively silicified rocks consist of over 96% SiO2; in these rocks, minor and trace elements decreased greatly, except for boron, which increased. Low Al2O3 and TiO2 contents in all studied rocks preclude the presence of significant volcanic or terrigenous detritus. Mn content increases with depth, perhaps reflecting contributions from basalts or hydrothermal solutions. Comparisons with cherts from oceanic plateaus in the central Pacific point to a more purely biogenic host sediment for the Costa Rica Rift cherts, more rapid precipitation of quartz, and formation nearer a spreading center. Despite being closer to continental sources of ash and terrigenous detritus, Costa Rica Rift cherts have lower Al2O3, Fe2O3, and Mn concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A suite of volcanic and volcaniclastic rocks selected from Ocean Drilling Program Leg 134 Sites 832 and 833 in the North Aoba Basin (Central New Hebrides Island Arc) has been analyzed for Sr, Nd, and Pb isotopes to investigate the temporal evolution of the arc magmatism. This arc shows two unusual features with respect to other western Pacific arcs: 1) subduction is eastdirected; and 2) a major submarine ridge, the d'Entrecasteaux Zone, has been colliding almost perpendicularly with the central part of the arc since about 3 Ma. Volcanic rocks from the upper parts of both holes, generated during the last 2 m.y., show higher 87Sr/86Sr and significantly lower 206Pb/204Pb and 143Nd/144 Nd values compared to those volcanics erupted before the collision of this ridge, as represented by samples from the lower section of both holes, or remote from the collisional region, in the southern part of the arc. These isotopic differences in the respective mantle sources cannot be interpreted in terms of geochemical input into the mantle wedge induced by the collision itself. Rather, they require long term (>500 m.y.) enrichment processes. The enriched mantle source could be, on a regional scale, a DUPAL-type reservoir with strong similarities to the source of Indian Ocean basalts. Isotopic analyses of drilled rocks from the DEZ show that the anomalous, enriched mantle component is not derived from this feature. We currently cannot identify a source for this enriched component, but note that it also exists in Lau Basin backarc volcanics, lavas from the West Philippine Sea, and also some lavas from the Mariana-Izu-Bonin arc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leg 94 Sites are located in a large geographic area of the northeastern Atlantic. Clay mineral analyses of the sediments recovered on Leg 94 (Eocene to the present), together with results obtained from previous DSDP legs (47B, 48, 80, 81, 82), provide greater insight into the paleoenvironmental evolution of the northeastern Atlantic. The characteristics of Eocene clay sediments are regional, reflecting, in the absence of strong bottom currents, the influence of neighboring petrographic environments: basic volcanic rocks (Sites 403-406, 552, and 608) and acid volcanic rocks (Sites 508 to 510). During the Oligocene, atmospheric circulation patterns left their mineralogical signatures in the southern part of the area investigated (Sites 558 and 608), whereas during the Miocene the intrusion of northern water masses led to the gradual homogenization of the clay sedimentation throughout the North Atlantic. In the late Pliocene, input from glacial sources became widespread.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A composite late Maastrichtian (65.5 to 68.5 Ma) marine osmium (Os) isotope record, based on samples from the Southern Ocean (ODP Site 690), the Tropical Pacific Ocean (DSDP Site 577), the South Atlantic (DSDP Site 525) and the paleo-Tethys Ocean demonstrates that subaerially exposed pelagic carbonates can record seawater Os isotope variations with a fidelity comparable to sediments recovered from the seafloor. New results provide robust evidence of a 20% decline in seawater 187Os/188Os over a period of about 200 kyr early in magnetochron C29r well below the Cretaceous-Paleogene Boundary (KPB), confirming previously reported low-resolution data from the South Atlantic Ocean. New results also confirm a second more rapid decline in 187Os/188Os associated with the KPB that is accompanied by a significant increase in Os concentrations. Complementary platinum (Pt) and iridium (Ir) concentration data indicate that the length scale of diagenetic remobilization of platinum group elements from the KPB is less than 1 m and does not obscure the pre-KPB decline in 187Os/188Os. Increases in bulk sediment Ir concentrations and decreases in bulk carbonate content that coincide with the Os isotope shift suggest that carbonate burial flux may have been lower during the initial decline in 187Os/188Os. We speculate that diminished carbonate burial rate may have been the result of ocean acidification caused by Deccan volcanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On Leg 121 of the Ocean Drilling Program, we recovered basaltic rocks from a total of three basement sites in the southern, central, and northern regions of Ninetyeast Ridge. These new sites complement the previous four basement holes drilled during Legs 22 and 26 of the Deep Sea Drilling Project, and confirm the predominantly tholeiitic, light rare earth element-enriched character of the basalts that cap the ridge. The basalts show marked iron enrichment; ferrobasalts occur at Sites 214 and 216 and oceanic andesites at Site 253. All of the basalts recovered during Leg 121 are altered, and range from aphyric olivine tholeiites (Site 756), to strongly plagioclase-phyric basalts (Site 757). Basalts from Site 758, which were clearly erupted in a submarine environment (pillow basalts are present in the section), are sparsely to strongly plagioclase-phyric. The basalts recovered at any one hole are isotopically homogeneous (except for the basalts from Site 758, which show a range of Pb isotopes), and it is possible to relate the magmas at any one site by high-level fractionation processes. However, there are significant variations in isotope ratios and highly incompatible element ratios between sites, which suggest that the mantle source for the ridge basalts was compositionally variable. Such variation, in view of the large volume of magmatic products that form the ridge system, is not surprising. There is not, however, a systematic variation in basalt composition along the ridge. We agree with previous models that relate Ninetyeast Ridge to a mantle plume in the southern Indian Ocean. The tholeiitic, iron-enriched, and voluminous character of the ridge basalts is typical of oceanic islands associated with plumes on or near a mid-ocean ridge (e.g., Iceland, Galapagos Islands, and St. Paul/Amsterdam islands). The absence of recovered alkalic suites is inconsistent with an intraplate setting, such as the Hawaiian Islands or Kerguelen Island. Thus, the major element data, like the gravity data, strongly suggest that the ridge was erupted on or very close to an active spreading center. Isotopically, the most likely plume that created the excess magmatism on the Ridge is the Kerguelen-Heard plume system, but the Ninetyeast Ridge basalts do not represent a simple mixing of the Kerguelen plume and mid-ocean Ninetyeast Ridge basalt mantle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium and O isotope compositions of green clay minerals from sediment cores of three boreholes drilled into (sites 424A and 509B) and close to a hydrothermal mound (site 424B) near the Galapagos Spreading Center (DSDP Legs 54 and 70) were determined. The green clays consist mostly of a transition from Fesmectite (nontronite) to glauconite. 87Sr/86Sr ratios were measured on clay size-fractions after gentle acid leaching and on the recovered leachates from different samples. The 87Sr/86Sr ratios of the clay residues from both the 424A and B sites are well below the modern seawater value, which points consistently to precipitation from hydrothermal fluids that contained variable amounts of seawater, even away from mound. However, most of the clay residues from mound site 509B have 87Sr/86Sr ratios significantly above the seawater value, suggesting the occurrence of a detrital component together with the new authigenic particles. The clay minerals of the hydrothermal mound are mixed with detrital components, and that of the sample taken outside but near the mound as a reference for the surrounding oceanic environment, yields a hydrothermal signature. Crystallization temperatures of the clays range from 32 to 63 °C assuming a d18O value of +2.2 per mil for the mineralizing fluids. Hydrothermal fluids generated in the underlying oceanic crust, mixed in varied proportions with ambient seawater and migrated into beds of the mound in a sequence of recurrent processes that ultimately resulted in the formation of the observed clay minerals. No significant temperature differences were detected for crystallization of the K-rich glauconite and K-depleted nontronite. The 87Sr/86Sr ratios of the Sr leached off the clay particles are near the value of modern seawater, inferring a progressive replacement of the hydrothermal fluids by seawater in the pore space of the mound sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pigmy Basin sediments cored in Hole 619 of Deep Sea Drilling Project Leg 96 are silty clays composed, on the average, of < 1% sand, 37% silt, 48% clay, and 14% carbonate minerals. Except for minor grain dissolution in some silt grains, there is no distinctive variation with depth in either composition or texture of the sand- and silt-sized minerals. This suggests a constant source of sediment supply and little diagenetic alteration of these size fractions. Clay minerals are dominated by smectite or, more precisely, montmorillonite. On the average, the clay-sized fraction consists of 48% smectite and mixed layer minerals, 30% illite, and 23% total kaolinite and chlorite. There appears to be a slight decrease in smectite and concomitant increases in other clay minerals with depth. These changes are further substantiated by the variations of ammonium acetate exchangeable K+, Mg2+, and Na+ in bulk samples. Thus, incipient diagenesis of Pigmy Basin sediments is evidenced in the mineralogical and associated chemical characteristics of the clay fractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transmission electron microscopy observations and rock magnetic measurements reveal that alteration of fine- and large-grained iron-titanium oxides can occur at different rates. Fine-grained titanomagnetite occurs as a crystallization product within interstitial glass that originated as an immiscible liquid within a fully differentiated melt; in several samples with ages to 32 Ma it displays very little or no oxidation (z = ca. 0). In contrast, samples with ages of 10 Ma or older are observed to also contain highly oxidized (z >/= 0.66) large-grained titanomaghemite. These large grains, having originated by direct crystallization from melt, are associated with pore space. Such pore space can serve as a conduit for fluids that promote alteration, whereas fine grains may have been "armored" against alteration by the glass matrix in which they are embedded. Apparently, alteration of oceanic crust is a heterogeneous process on a microscopic scale. The existence of pristine, fine-grained titanomagnetite in the interstitial glass of older ocean-floor basalts that have undergone significant alteration implies that such glassy material is capable of carrying original thermal remanent magnetization and may be suitable for paleointensity determinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glauconite-rich sediments have been encountered at two horizons during drilling in the southwest Rockall Plateau. The younger of these horizons lies at the base of a deep-sea ooze sequence and is of early or middle Miocene age. Glauconite formed in situ during periods of nondeposition related to strong bottom-water currents, in water depths of as much as 2500 m - five times greater than previously accepted limits for glauconite formation. The older horizon, of early Eocene age, is a record of the major transgression coincident with the separation of Rockall and Greenland. Isotopic age dating of the Miocene glauconites gives results in relatively close accord with their biostratigraphic age. However, an Eocene (NP12) glauconite gives a highly discrepant date (36.5 m.y. ago). One possible explanation is that the Eocene glauconites have continued to evolve after burial by the diagenetic uptake of potassium from the surrounding mud matrix, a possibility denied to the Miocene glauconites by the relative scarcity of available potassium in the nannofossil-foraminiferal ooze matrix.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of 87Sr/86Sr ratios of interstitial waters from leg 25, site 245 and leg 38, site 336 of the Deep Sea Drilling Project show that the enrichment of Sr[2+] with depth is caused both by the alteration of volcanic material and by the introduction of strontium derived from calcium carbonate. 87Sr/86 Sr ratios range from 0.70913 to 0.70794 at site 245 and from 0.70916 to 0.70694 at site 336. The low ratios compared with contemporaneous seawater reflect the release of Sr from a volcanic source having, according to material-balance calculations, a 87Sr/86 Sr ratio of about 0.7034 at site 336. At this site the source appears to be volcanic ash and not basaltic basement which acts as a sink for Sr[2+] during in situ low-temperature weathering. The volcanic contribution to the strontium enrichment in the basal interstitial waters varies from <10% at site 245 to >50% at site 336. The remaining Sr[2+] is derived from Sr-rich biogenic carbonate during diagenetic recrystallization to form Sr-poor calcite.