990 resultados para Datum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An Eocene-Oligocene calcareous nannofossil biostratigraphic framework for Ocean Drilling Program (ODP) Site 748 in the southern Indian Ocean is established, which provides a foundation for this and future quantitative biogeographic studies. This biostratigraphic analysis, together with quantitative nannofossil data, enables a reinterpretation of the preliminary magnetostratigraphy and a new placement for magnetic Subchron CBN in the lowermost Oligocene. Calcareous nannofossil species diversity is low at Site 748 relative to lower latitude sites, with about 13 taxa in the middle Eocene, gradually decreasing to about 6 in the late Oligocene. There is, however, no apparent mass extinction at any stratigraphic level. Similarly, no mass extinctions were recorded at or near the Eocene/Oligocene boundary at Site 711 in the equatorial Indian Ocean. Species diversity at the equatorial site is significantly higher than at Site 748, with a maximum of 39 species in the middle Eocene and a minimum of 14 species in the late Oligocene. The abundance patterns of nannofossil taxa are also quite different at the two sites, with chiasmoliths, Isthmolithus recurvus, and Reticulofenestra daviesii abundant and restricted to the high-latitude site and Coccolithus formosus, discoasters, and sphenoliths abundant at the equatorial site but impoverished at the high-latitude site. This indicates a significant latitudinal biogeographic gradient between the equatorial site and the high-latitude site in the Indian Ocean for the middle Eocene-Oligocene interval. The abundance change of warm-water taxa is similar to that of species diversity at Site 711. There is a general trend of decreasing abundance of warm-water taxa from the middle Eocene through the early Oligocene at Site 711, suggesting a gradual cooling of the surface waters in the equatorial Indian Ocean. The abundance of warm-water taxa increased in the late Oligocene, in association with an increase in species diversity, and this may reflect a warming of the surface waters in the late Oligocene. An abrupt increase in the abundance of cool-water taxa (from ~20% to over 90%) occurred from 36.3 to 35.9 Ma at high-latitude Site 748. Coincident with this event was a ~1.0 per mil positive shift in the delta18O value of planktonic foraminifers and the occurrence of ice-rafted debris. This abrupt change in the nannofossil population is a useful biostratigraphic event for locating the bottom of magnetic Subchron C13N in the Southern Ocean. The sharp increase in cool-water taxa coeval with a large positive shift in delta18O values suggests that the high-latitude surface waters drastically cooled around 36.3-35.9 Ma. The temperature drop is estimated to be 4°C or more at Site 748 based on the nannofossil population change relative to the latitudinal biogeographic gradient established in the South Atlantic Ocean during previous studies. Consequently, much of the delta18O increase at Site 748 appears to be due to a temperature drop in the high latitudes rather than an ice-volume signal. The ~0.1 per mil delta18O increase not accounted for by the temperature drop is attributed to an ice-volume increase of 4.6 * 10**3 km**3, or 20% the size of the present Antarctic ice sheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dataset presents Differential Global Positioning System data (DGPS) acquired within the Bossons glacier proglacial area. Bossons glacier is a rapidly retreating glacier and its proglacial area is deglaciated for ~30 years. Bossons stream is one of the outlets of the subglacial drainage system. It starts as a 800 m steep cascade reach, then flows through an area with gentler slope : the Plan des Eaux (PdE). PdE is a 300 m long, 50 m wide proglacial alluvial plain with an increasing channel mobility in the downstream direction but decreasing slope gradient and incision. As it may act a sediment trap, studying periglacial and proglacial erosion processes in the Bossons catchment requires to quantify PdE sediment volume evolution. A several meter-sized block located within Bossons proglacial area was set up as GPS base : its location was measured by one antenna (Topcon Hyper Pro) by performing 600 consecutive measurements throughout one day. A second antenna (Topcon Hyper Pro) was then used to measure XYZ location of points in the proglacial area with a ~2 m grid. Radio communication between the two antennas allowed differential calculations to be automatically carried out on field using the Topcon FC-250 hand controller. This methodology yields 3 cm XY and 1.5 cm Z uncertainties. DGPS data have been acquired through 10 campaigns from 2004 to 2014; campaigns from 2004 to 2008 cover a smaller area than those from 2010 to 2014. Digital Elevation Model (DEM) have been interpolated from DGPS data and difference between two DEMs yields deposited and eroded volume within PdE. Maps of PdE volume variation between two campaigns show that incision mainly occurs in the upper and lower sections where as deposition dominates in the middle section. Deposition, denudation and net rate (deposition rate - denudation rate) are calculated by normalizing volumes by DEM areas. Deposition dominates results with a mean net rate of 29 mm/yr. However, strong inter-annual variability exists and some years are dominated by denudation : -36 mm/yr and -100 mm/yr for 2006 and 2011, respectively. Nonetheless, oldest campaigns (2004 to 2008) were carried out on the lower part part of the alluvial plain and ruling them out to keep only complete DEM (2010 to 2014) yields a mean net rate of ~15 mm/yr. This results is coherent with field observations of both strong deposition (e.g. flood deposits) and strong erosion (e.g. 30 cm incision) evidences. Bossons glacier proglacial area is thus dynamic with year-to-year geormorphological changes but may leans toward increasing its mean elevation through a deposition dominated system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micropaleontologists have traditionally recognized the mid-Miocene Fohsella lineage as a flagship for phyletic gradualism within the planktic foraminifera. However, study of a deep-sea record from the western equatorial Pacific (ODP Site 806) reveals that coiling ratios within this clade suddenly (<5 kyr) shift after a prolonged, ancestral state of near randomness (~50%) to a transient phase (13.42-13.43 Ma) of dextral dominance (~75%) immediately following the first common occurrence of keeled fohsellids. This brief period of dextral dominance was abruptly (<5 kyr) succeeded by an irreversible change to sinistral dominance (~96%). Fohsellid abundances decline markedly through the interval in which the sinistral preference is established. The shift to sinistrality (13.42 Ma) predated the deepening of fohsellid depth ecology by ~240-488 kyr, indicating that these two events were unrelated. This view is supported by a lack of delta 18O evidence for depth-habitat differences between the two chiral forms, which refutes the notion that sinistral fohsellids were "pre-adapted" for ensuing hydrographic change because they occupied a deeper depth habitat than their dextral counterparts. Planktic foraminiferal assemblages become strongly oligotrophic in character through the interval in which the fohsellid delta 18O increase is recorded, indicating that the migration to deeper depths was fostered by an expansion of the mixed layer in the western equatorial Pacific. Salient aspects of this brief, but conspicuous faunal change are a marked increase in the abundance of symbiont-bearing globigerinoidids, a concomitant collapse of local Jenkinsella mayeri/siakensis populations, and reduced fohsellid abundances. The rapid and permanent nature of the Fohsella sinistral shift provides a distinct, unequivocal datum that may prove useful for correlating mid-Miocene sections throughout the Caribbean Sea and tropical regions in the western sectors of the Pacific and Atlantic. The coiling ratio changes that occurred during the evolution of the Fohsella chronocline probably reflect changing population dynamics between cryptic genotypes with different coiling preferences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 823 m thick glaciomarine Cenozoic section sitting unconformably on the Lower Devonian Beacon Supergroup was recovered in CRP-3. This paper reviews the chronostratigraphical constraints for the Cenozoic section. Between 3 and 480.27 mbsf 23 unconformity bounded cycles of sediment were recorded. Each unconformity is thought to represent a hiatus of uncertain duration. Four magnetozones have been recognised from the Cenozoic section. The record is complex with several 'tiny wiggles'' recorded throughout. Biostratigraphical or Sr ages, which could be used to link these magnetozones to the magnetic polarity time scale are restricted to the upper 190 m of sediment. Two diatom datums (Cavitatus jouseanus at 48.9 mbsf and Rhizosolenica antarctica at 68.60 mbsf), together with five Sr-isotope dates derived from molluscan fragments taken from between 10.88 and 190.29 mbsf indicate an early Oligocene (c. 31 Ma) age for this interval. The appearance of a new species of the bivalve ?Adamussium at about 325 mbsf, suggests that the Oligocene age can be extended down to this level. This confirms that the dominantly reversed magnetozone (RI), recorded down to about 340 mbsf, is Chron C12r. The ages imply high sedimentation rates and only minimal time gaps at the sequence boundaries. Below 340 mbsf there are no independent datums to guide the correlation of the magnetozones to the magnetic polarity time scale. However, the absence of in situ dinocysts attributable to Transantarctic Flora, if not a result of environmental control, limits the age of the base of the hole to between c. 33.5 and 35 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in paleoclimate and paleoproductivity patterns have been identified by analysing, in conjunction with other available proxy data, the coccolithophore assemblages from core MD03-2699, located in the Portuguese margin in the time interval from the Marine Isotope Stage (MIS) 13/14 boundary to MIS 9 (535 to 300 ka). During the Mid-Brunhes event, the assemblages associated with the eccentricity minima are characterised by higher nannoplankton accumulation rate (NAR) values and by the blooming of the opportunistic genus Gephyrocapsa. Changes in coccolithophore abundance are also related to glacial-interglacial cycles. Higher NAR and numbers of coccoliths/g mainly occurred during the interglacial periods, while these values decreased during the glacial periods. Superimposed on the glacial/interglacial cycles, climatic and paleoceanographic variability has been observed on precessional timescales. The structure of the assemblages highlights the prevailing long-term influence of the Portugal (PC) and Iberian Poleward (IPC) Currents, following half and full precession harmonics, related to the migration of the Azores High (AH) Pressure System. Small Gephyrocapsa and Coccolithus pelagicus braarudii are regarded as good indicators for periods of prevailing PC influence. Gephyrocapsa caribbeanica, Syracosphaera spp., Rhabdosphaera spp. and Umbilicosphaera sibogae denote periods of IPC influence. Our data also highlights the increased percentages of Coccolithus pelagicus pelagicus during the occurrence of episodes of very cold and low salinity surface water, probably related to abrupt climatic events and millennial-scale oscillations of the AH/Icelandic Low (IL) System.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were ~20°C and cooled an average of ~5°C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative distributions of calcareous nannofossils are analysed in the early-middle Pleistocene at the small Gephyrocapsa and Pseudoemiliania lacunosa zone transition in deep-sea cores from the Mediterranean Sea and North Atlantic Ocean (Ocean Drilling Program [ODP] Sites 977, 964 and 967, Deep Sea Drilling Project [DSDP] Site 607). The temporal and spatial mode of occurrence of medium-sized gephyrocapsids and reticulofenestrids has been examined to refine biostratigraphic constraints and evaluate possible relationships of stratigraphic patterns to environmental changes during a period of global climatic deterioration. The timing of bioevents has been calibrated using high-resolution sampling and correlation to the delta18O record in chronologically well-constrained sections. Newly identified events and ecostratigraphical signals enhance the stratigraphic resolution at the early-middle Pleistocene. The first occurrence (FO) of intermediate morphotypes between Pseudoemiliania and Reticulofenestra (Reticulofenestra sp.) is proposed as a reliable event within marine isotope stage (MIS) 35 or at the MIS 35/34 transition. The distribution of Reticulofenestra asanoi is characterized by rare and scattered occurrences in its lowest range, but the first common occurrence (FCO) is consistently identified at MIS 32 or 32/31; the last common occurrence (LCO) of the species is a distinctive event at MIS 23. In the studied interval, Gephyrocapsa omega dominates among medium-sized Gephyrocapsa. The FO of G. omega and contemporaneous re-entry of medium-sized gephyrocapsids at the lower-middle Pleistocene transition are diachronous between the Atlantic Ocean and Mediterranean Sea and from the western to eastern Mediterranean. In the Mediterranean, the LO of G. omega falls at MIS 15, insolation cycle 54 and is isochronous among the sites. Abundance fluctuations of G. omega show notable relations to early-middle Pleistocene climate changes; they considerably increase in abundance at the interglacial stages, suggesting warm water preferences. Gephyrocapsa omega temporarily disappears during the glacial MIS 22 and MIS 20. Above MIS 20, an impoverishment in G. omega and in the total abundance of medium-sized gephyrocapsids occurs. A decrease in abundance of G. omega is observed between the western Site 977 and the easternmost Site 967 in the Mediterranean Sea, as a possible response to high salinity and/or low nutrient content. Possible environmental influences on the distribution of R. asanoi and of Reticulofenestra sp. are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the DSDP Legs 1, 11, 13, 17, 25, 27, 32, 36, 41, 43, 44, 50, and 62 the Lower Cretaceous foraminifers have been investigated for biostratigraphical, taxonomical, and palaeoecological purposes. An overview of the cored Lower Cretaceous sections of Leg 1-80 is given. In the Northern Atlantic Ocean characteristic foraminiferal faunas are missing from the Upper Tithonian to the Valanginian due to a marked regression which caused hiatuses. In areas without black shale conditions Valanginian to Barremian medium rich to poor microfaunas with Praedorothia ouachensis (Sigal) of the Praedorothia ouachensis Zone (Valanginian-Hauterivian). The Hauterivian-Aptian interval is characterized by zones of Gavelinella barrerniana, Gaudryina dividens, and Conorotalites aptiensis. During the Albian a world-wide fauna consisting of agglutinated and calcareous foraminifers of the Pseudoclavulina gaultina Zone is established in areas lacking the wide-spread black-shale conditions. The Upper Albian and the Cenomanian are represented by the Gavelinella eenomanica Zone. Some ornamented species of the nodosariids (Citharina, Lenticulina), Gavelinella, Conorotatites, Pleurostomella, Vatvulineria, and Osangularia are of some importance for the biostratigraphy of the Berriasian-Albian interval. The Berriasian to Albian zones introduced for the Tethys and the DSDP by Moullade (1984) could only be of some local importance due to the long stratigraphical range of the foraminiferal species used. In the Indian Ocean an exact stratigraphical age cannot be assigned to the few Neocomian foraminiferal faunas of a cooler sea water (Site 261). These faunas mainly contain primitive agglutinated foraminifers, because in most cases the calcareous tests are dissolved or redeposited. In the Pacific Ocean most of the Berriasian to Aptian microfaunas are of minor biostratigraphical and palaeoecological importance for reasons of poor core recoveries, contaminations or original foraminiferal poverty (black shales). Since the Albian there are somewhat higher-diverse faunas of calcareous and agglutinated foraminifers with index species of the Pseudoclavulina gaultina Zone. As a rule, the boundary Albian/Cenomanian is set by means of planktonic foraminifers because no other foraminifer has its first appearance datum during this interval, except Gavelinella cenornanica. During the Albian very uniform, world-wide foraminiferal faunas without a marked provincialism are obvious.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative records of Globorotalia puncticulata and Globorotalia inflata, the last two members of the Globorotalia (Globoconella) lineage, obtained from North Atlantic sediments collected at DSDP Site 552, ODP Site 659 and ODP Site 665, are used to examine fluctuations in the biogeographic distribution of these species in the Late Pliocene between 3 and 2 Ma. Abundance data indicate that prior to the expansion of Northern Hemisphere glaciation at about 2.5 Ma, Gr. puncticulata was an important component of the planktonic foraminiferal fauna and had a geographic distribution ranging from 2°N to at least 56°N in the North Atlantic. A previously undescribed 6 chambered variant of Gr. puncticulata is found at both Sites 659 and 665. The stratigraphic distribution of this morphotype is restricted, first occurring at 2.9 Ma and then disappearing when glacial intensity increased at 2.75 Ma (isotope stage 110). Similar declines in Gr. puncticulata abundances occurred during glacial isotope stages 102, 100, and 98 immediately prior to the extinction of Gr. puncticulata during glacial isotope stage 96. It appears that this extinction event was latitudinally diachronous within the North Atlantic, occurring earliest in the north at Site 552 (2.453 Ma), then at Site 659 (2.443 Ma) and later still in the Site 665 equatorial record (2.438 Ma). At Site 665 the first record of Gr. inflata occurs during glacial isotope stage 94 (2.416 Ma), shortly after the extinction of Gr. puncticulata. In the mid latitude North Atlantic there was a 340,000 year period following the disappearance of Gr. puncticulata when the Globoconella lineage was absent (the Gr. inflata gap). The Gr. inflata population found in the equatorial Atlantic must therefore have been introduced from the South Atlantic, probably by the South Equatorial Current. Faunal records from Sites 552 and 659 show that it was not until glacial isotope stage 78 (2.10 Ma) that Gr. inflata became widely established in the North Atlantic. Prior to this large-scale migration event, there were two limited colonisation events during glacial isotope stages 86 and 82 when Gr. inflata populations reached as far as Site 659 in the eastern North Atlantic. These incursions are believed to be reflect the entrainment of Gr. inflata within South Atlantic Central Water and the northward subsurface transport of individuals to the coastal upwelling zone off northwest Africa. It seems likely that the same mechanism was responsible for the re-establishment of the Globoconella lineage in the North Atlantic at 2.10 Ma, but in this instance additional factors, such as enhanced glacial circulation patterns and ecological changes within planktonic foraminiferal faunas, resulted in the successful expansion of Gr. inflata across the North Atlantic and the Mediterranean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of the Southern Ocean climate during the late Eocene-late Oligocene interval is examined through highresolution, quantitative calcareous nannofossil analyses on samples from the Southern Ocean sections on Maud Rise and Kerguelen Plateau. We determined the abundance patterns of the counted species to clarify the biostratigraphy, which we correlated with high-resolution magnetostratigraphy [Roberts, A.P., Bicknell, S.J., Byatt, J., Bohaty, S.M., Florindo, F., Harwood, D.M., 2003a. Magnetostratigraphic calibration of Southern Ocean diatom datums from the Eocene-Oligocene of Kerguelen Plateau (Ocean Drilling Program Sites 744 and 748). In: Florindo, F., Cooper, A.K., O'Brien, P.A. (Eds.), Antarctic Cenozoic Palaeoenvironments: Geologic Record and Models. Palaeogeogr., Palaeoclimatol., Palaeoecol. 198 145-168; Florindo, F., Roberts, A.P., in press. Eocene-Oligocene magnetobiochronology of ODP Sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Geol. Soc. Am. Bull.], and used this data to interpret paleoceanographic changes through the late Eocene to late Oligocene. Percentage plots of the individual species, compared with R-mode principal component and cluster analysis results, allowed us to divide the assemblages into three groups: temperate-water taxa, cool-water taxa, and no temperature-affinity taxa. We attempt correlations between these paleoecological groups and the major sea-surface temperature (SST) variations with tectonic and paleoceanographic changes in the Southern Ocean. During the late Eocene, the nannofossil assemblage data reveal that there were several minor SST decreases (coolings) from 36 to 34 Ma, before the Eocene/Oligocene (E/O) boundary. A sharp cooling event, dated at 33.54 Ma (earliest Oligocene), occurred about 160 kyr after the E/O boundary, which is dated at 33.7 Ma. Relatively stable, cool conditions are interpreted to persist until the latest Oligocene, when an increase in abundance of temperate-water taxa, which corresponds to an antithetical decrease in abundance of cool-water indicators, is recorded. On the basis of our dating, the opening of the Drake Passage, allowing shallow-water circulation, began by 33.54 Ma at the latest, while the establishment of deep-water connections through the Tasmanian Gateway occurred at 33 Ma, as suggested by Exon et al. [Proc. ODP, Init. Rep. 189 (2001) 1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early Oligocene siliceous microfossils were recovered in the upper c. 193 m of the CRP-3 drillcore. Although abundance and preservation are highly variable through this section, approximately 130 siliceous microfossil taxa were identified, including diatoms, silicoflagellates, ebridians, chrysophycean cysts, and endoskeletal dinoflagellates. Well-preserved and abundant assemblages characterize samples in the upper c. 70 m and indicate deposition in a coastal setting with water depths between 50 and 200 m. Abundance fluctuations over narrow intervals in the upper c. 70 mbsf are interpreted to reflect environmental changes that were either conducive or deleterious to growth and preservation of siliceous microfossils. Only poorly-preserved (dissolved, replaced, and/or fragmented) siliceous microfossils are present from c. 70 to 193 mbsf. Diatom biostratigraphy indicates that the CRP-3 section down to c. 193 mbsf is early Oligocene in age. The lack of significant changes in composition of the siliceous microfossil assemblage suggests that no major hiatuses are present in this interval. The first occurrence (FO) of Cavitatus jouseanus at 48.44 mbsf marks the base of the Cavitatus jouseanus Zone. This datum is inferred to be near the base of Subchron C12n at c. 30.9 Ma. The FO of Rhizosolenia antarctica at 68.60 mbsf marks the base of the Rhizosolenia antarctica Zone. The FO of this taxon is correlated in deep-sea sections to Chron C13 (33.1 to 33.6 Ma). However, the lower range of R. antarctica is interpreted as incomplete in the CRP-3 drillcore, as it is truncated at an underlying interval of poor preservation: therefore, an age of c. 33.1 to 30.9 Ma is inferred for interval between c. 70 and 50 mbsf. The absence of Hemiaulus caracteristicus from diatom-bearing interval of CRP-3 further indicates an age younger than c. 33 Ma (Subchron C13n) for strata above c. 193 mbsf. Siliceous microfossil assemblages in CRP-3 are significantly different from the late Eocene assemblages reported CIROS-1 drillcore. The absence of H. caracteristicus, Stephanopyxis splendidus, and Pterotheca danica, and the ebridians Ebriopsis crenulata, Parebriopsis fallax, and Pseudoammodochium dictyoides in CRP-3 indicates that the upper 200 m of the CRP-3 drillcore is equivalent to part of the stratigraphic interval missing within the unconformity at c. 366 mbsf in CIROS-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mediterranean Sea hydrology at the time of the Heinrich formation in the North Atlantic Ocean was analyzed by comparing sea surface temperatures (SSTs) and oxygen isotope composition of seawater (dw) changes during the past 75 kyr in two marine cores. These were compared to the palynological variations derived in the Mediterranean Sea core. During the last glacial the two oceanic SST records show similar and synchronous patterns, with several long-term cooling periods, ending by abrupt SST increases. At the time of the Heinrich events, cold SSTs and low salinity prevailed in the Mediterranean Sea. The freshwater budget was similar to the modern one, permitting the presence of a mixed forest on the Mediterranean borderlands. The post-Heinrich periods are marked by a freshwater budget decrease, limiting oak and fir tree growth in the Mediterranean region. Increase of precipitation or reduction of evaporation is observed before the Heinrich episode, and is associated with a well-developed mixed Mediterranean forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 114 recovered nannofossil-bearing sediments from seven sites in the high latitudes of the South Atlantic Ocean. Cretaceous sections were recovered from Sites 698 and 700, located on the Northeast Georgia Rise and its lower flanks, respectively. These contain distinctive high-latitude nannofossil floras similar to those from high-latitude areas of the Northern Hemisphere. Most of the biostratigraphic datums used to date the upper Campanian to Maestrichtian interval appear to lie at approximately the same level in both hemispheres. The FAD of Nephrolithus frequens is confirmed to be diachronous with an earlier occurrence in high latitudes. The LAD of Monomarginatus primus n. sp. also appears to be diachronous with a later LAD in the high latitudes of the Southern Hemisphere. Fossiliferous Paleocene to lowermost Miocene sediments were recovered at all seven sites, from the Northeast Georgia Rise in the west to the Meteor Rise in the east. These nannofossil floras, although restricted in diversity and only poorly preserved, are sufficiently distinctive to allow the recognition of 19 zones and three subzones, which are used to date and correlate the cores recovered. Only Site 704 on the Meteor Rise yielded a substantial section of Miocene to Quaternary nannofossil-rich sediments. The nannofossil floras of this section are of very low diversity, with usually fewer than eight species present. Some stratigraphic ranges of important biostratigraphic datum species are observed to be different in the high-latitude sections from those recorded from low-latitude areas. The LAD of Reticulofenestra bisecta, when calibrated by magnetostratigraphy, appears to occur earlier in Hole 699A (within Chron C6CR) than in Hole 703A and possibly Hole 704B and in other published accounts of lower latitude sites in the South Atlantic. The FAD of Nannotetrina fulgens/N. cristata appears to occur later in Hole 702B (Chron C20R) than it does in other published accounts of lower latitude sites in the South Atlantic. Diachroneity is also suspected in the stratigraphic ranges of Chiasmolithus solitus and Chiasmolithus oamaruensis, although poor magnetostratigraphic results through the critical interval prevent confirmation of this. Differences in the relative stratigraphic ranges of lsthmolithus recurvus and Cribrocentrum coenurumlC. reticulatum at Sites 699 and 703 are noted. These possibly suggest warmer surface waters on the eastern side (Site 703) of the middle to late Eocene South Atlantic than those on the western side (Site 699). The diversities of the nannofossil floras and the presence of the warm-water genera Discoaster, Sphenolithus, Helicosphaera, and Amaurolithus reflect the changing surface water temperatures throughout the Cenozoic. Warmer periods are inferred for the late Paleocene to early middle Eocene, late middle Eocene to late Eocene, latest Oligocene to earliest Miocene, and possibly the Pliocene. Colder periods are inferred for the middle Eocene, most of the Oligocene, and the Miocene. Dramatic changes in the nannofossil floras of the Pleistocene of Site 704 are thought to reflect a rapidly changing environment. Monomarginatus primus, a new species from the Upper Cretaceous strata of Hole 700B, is described.