967 resultados para DYNAMICAL REALIZATIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. Crossing transformations constitute a group of permutations under which the scattering amplitude is invariant. Using Mandelstem's analyticity, we decompose the amplitude into irreducible representations of this group. The usual quantum numbers, such as isospin or SU(3), are "crossing-invariant". Thus no higher symmetry is generated by crossing itself. However, elimination of certain quantum numbers in intermediate states is not crossing-invariant, and higher symmetries have to be introduced to make it possible. The current literature on exchange degeneracy is a manifestation of this statement. To exemplify application of our analysis, we show how, starting with SU(3) invariance, one can use crossing and the absence of exotic channels to derive the quark-model picture of the tensor nonet. No detailed dynamical input is used.

II. A dispersion relation calculation of the real parts of forward π±p and K±p scattering amplitudes is carried out under the assumption of constant total cross sections in the Serpukhov energy range. Comparison with existing experimental results as well as predictions for future high energy experiments are presented and discussed. Electromagnetic effects are found to be too small to account for the expected difference between the π-p and π+p total cross sections at higher energies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents investigations in four areas of theoretical astrophysics: the production of sterile neutrino dark matter in the early Universe, the evolution of small-scale baryon perturbations during the epoch of cosmological recombination, the effect of primordial magnetic fields on the redshifted 21-cm emission from the pre-reionization era, and the nonlinear stability of tidally deformed neutron stars.

In the first part of the thesis, we study the asymmetry-driven resonant production of 7 keV-scale sterile neutrino dark matter in the primordial Universe at temperatures T >~ 100 MeV. We report final DM phase space densities that are robust to uncertainties in the nature of the quark-hadron transition. We give transfer functions for cosmological density fluctuations that are useful for N-body simulations. We also provide a public code for the production calculation.

In the second part of the thesis, we study the instability of small-scale baryon pressure sound waves during cosmological recombination. We show that for relevant wavenumbers, inhomogenous recombination is driven by the transport of ionizing continuum and Lyman-alpha photons. We find a maximum growth factor less than ≈ 1.2 in 107 random realizations of initial conditions. The low growth factors are due to the relatively short duration of the recombination epoch.

In the third part of the thesis, we propose a method of measuring weak magnetic fields, of order 10-19 G (or 10-21 G if scaled to the present day), with large coherence lengths in the inter galactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. We perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-alpha photons.

In the final part of the thesis, we study the non-linear effects of tidal deformations of neutron stars (NS) in a compact binary. We compute the largest three- and four-mode couplings among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We demonstrate the near-exact cancellation of their effects, and resolve the question of the stability of the tidally deformed NS to leading order. This result is significant for the extraction of binary parameters from gravitational wave observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atualmente, as tendências competitivas do mercado mundial, têm forçado os engenheiros estruturais a desenvolver soluções de projeto que acarretem em menor peso e custo de execução. Uma consequência direta desta nova tendência de projeto é o aumento considerável de problemas relacionados a vibrações de piso indesejadas. Por esta razão, os sistemas estruturais de pisos podem tornar-se vulneráveis a vibrações excessivas, como por exemplo, aquelas induzidas por equipamentos mecânicos (máquinas rotativas). Deste modo, este trabalho objetiva investigar o comportamento dinâmico de uma plataforma de aço para produção de petróleo, localizada na bacia de Santos (campo de Merluza), São Paulo, Brasil. Para tal, investiga-se a influência das ações dinâmicas oriundas dos equipamentos mecânicos localizados sobre os decks metálicos da plataforma. A resposta dinâmica do modelo estrutural foi determinada através de um extenso estudo numérico, a partir da análise de suas frequências naturais, deslocamentos, velocidades e acelerações de pico. Nesta investigação, as cargas dinâmicas provenientes dos equipamentos mecânicos (máquinas rotativas) foram aplicadas sobre o piso metálico do sistema estrutural. Com base obtenção da resposta dinâmica da estrutura (deslocamentos, velocidades e acelerações), foi possível avaliar a performance do modelo estrutural em termos de critérios de conforto humano e das tolerâncias máximas referentes aos equipamentos mecânicos, de acordo com normas e recomendações de projeto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]El objetivo del presente TFG es el Análisis Dinámico de mecanismos paralelos según las necesidades de la mecatrónica. La mecatrónica requiere expresiones explícitas de las fuerzas motoras que sólo dependen de las propias posiciones, velocidades y aceleraciones en los accionamientos. Ello requiere métodos avanzados de la mecánica analítica de sólido rígido. Concretamente se han desarrollado la ecuación de Lagrange modificada (según [11]) y la ecuación de Boltzmann-Hamel modificada, siendo esta última una aportación de este TFG. Como aplicación práctica se ha programado un modelo mecatrónico para un manipulador paralelo 5R y se ha optimizado el diseño de una Multi Axis Simulation Table 3PRS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of two channels NN and NN*, coupled through unitarity, is studied to see whether sizable peaks can be produced in elastic nucleon-nucleon scattering due to the opening of a strongly coupled inelastic channel. One-pion-exchange (OPE) interactions are calculated to estimate the NN*→NN* and NN→NN* amplitudes. The OPE production amplitudes are used as the sole dynamical input to drive the multichannel ND-1 equations in the determinental approximation, and the effect on the J = 2+ (1D2) elastic NN scattering amplitude is studied as the width of the unstable N* and strength of coupling to the inelastic channel are varied. A cusp-type enhancement appears in the NN channel near the NN* threshold but for the known value of the N* width the cusp is so “wooly” that any resulting elastic peak is likely to be too broad and diminished in height to be experimentally prominent. A brief survey of current experimental knowledge of the real part of the 1D2 NN phase shift near the NN* threshold is given, and the values are found to be much smaller than the nearly “resonant” phase shifts predicted by the coupled channel model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.

Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.

We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.

By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.

Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.

A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between fluid flows and elastic bodies are ubiquitous in nature. One such phenomena that is encountered on a daily basis is the flapping and fluttering of leaves in the wind. The fluid-structure interaction that governs the physics of a leaf in the wind is poorly understood at best and has potential applications in biomechanics, vehicle design, and energy conversion. We build upon previous work on the flapping dynamics of inverted flags, which are cantilevered elastic sheets with free leading edge and fixed trailing edge that display unique large amplitude oscillatory behaviors. We model a leaf in the laboratory using modified inverted flags, experimentally probing the governing parameters behind leaf fluttering as well as shedding light on the physics behind the inverted flag phenomena. The behavior of these "inverted leaves" studied here display sensitive dependence on two biomechanically relevant parameters, stem-to-leaf rigidity and stem-to-leaf length. In addition, leaves on a tree are not often found alone. We seek to understand the complex interactions of multiple fluttering and flapping leaves by way of examining the interactions between pairs of inverted flags. Coupling through their flow fields, pairs of inverted flags exhibit striking emergent phenomena. We report these observed dynamical behaviors and the conditions upon which they arise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presented in the first part of this thesis is work performed on the ionizing energy beam induced adhesion enhancement of thin (~ 500 Angstrom) Au films on GaAs substrates. The ionizing beam, employed in the present thesis, is the MeV ions (i.e., 16O, 19F, and 35Cl), with energies between 1 and 20 MeV. Using the "Scratch" test for adhesion measurement, and ESCA for chemical analysis of the film-substrate interface, the native oxide layer at the interface is shown to play an important role in the adhesion enhancement by the ionizing radiation. A model is discussed which explains the experimental data on the the dependence of adhesion enhancement on the energy which was deposited into electronic processes at the interface. The ESCA data indicate that the chemical bonds (or compounds), which are responsible for the increase in the thin film adherence, are hydroxides rather than oxides.

In the second part of the thesis we present a research performed on the radiation damage in GaAs crystals produced by MeV ions. Lattice parameter dilatation in the surface layers of the GaAs crystals becomes saturated after a high dose bombardment at room temperature. The strain produced by nuclear collisions is shown to relax partially due to electronic excitation (with a functional dependence on the nuclear and electronic stopping power of bombarding ions). Data on the GaAs and GaP crystals suggest that low temperature recovery stage defects produce major crystal distortion. The x-ray rocking curve technique with a dynamical diffraction theory analysis provides the depth distribution of the strain and damage in the MeV ion bombarded crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic Kαl x-ray isotope shifts have been measured for Sn 116-124, Sm 148-154, W 182-184, W 184-186, and W 182-186 using a curved crystal Cauchois spectrometer. The analysis of the measurements has included the electrostatic volume effect, screening by the transition electron as well as the non-transition electrons, normal and specific mass shifts, dynamical nuclear qudrupole polarization, and a radiative correction effect of the electron magnetic moment in the nuclear charge radii are obtained. Where other experimental data are available, the agreement with the present measurements is satisfactory. Comparisons with several nuclear model predictions yield only partial agreement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sufficient stability criteria for classes of parametrically excited differential equations are developed and applied to example problems of a dynamical nature.

Stability requirements are presented in terms of 1) the modulus of the amplitude of the parametric terms, 2) the modulus of the integral of the parametric terms and 3) the modulus of the derivative of the parametric terms.

The methods employed to show stability are Liapunov’s Direct Method and the Gronwall Lemma. The type of stability is generally referred to as asymptotic stability in the sense of Liapunov.

The results indicate that if the equation of the system with the parametric terms set equal to zero exhibits stability and possesses bounded operators, then the system will be stable under sufficiently small modulus of the parametric terms or sufficiently small modulus of the integral of the parametric terms (high frequency). On the other hand, if the equation of the system exhibits individual stability for all values that the parameter assumes in the time interval, then the actual system will be stable under sufficiently small modulus of the derivative of the parametric terms (slowly varying).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stars with a core mass greater than about 30 M become dynamically unstable due to electron-positron pair production when their central temperature reaches 1.5-2.0 x 109 0K. The collapse and subsequent explosion of stars with core masses of 45, 52, and 60 M is calculated. The range of the final velocity of expansion (3,400 – 8,500 km/sec) and of the mass ejected (1 – 40 M) is comparable to that observed for type II supernovae.

An implicit scheme of hydrodynamic difference equations (stable for large time steps) used for the calculation of the evolution is described.

For fast evolution the turbulence caused by convective instability does not produce the zero entropy gradient and perfect mixing found for slower evolution. A dynamical model of the convection is derived from the equations of motion and then incorporated into the difference equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation is concerned with various fundamental aspects of the linearized dynamical theory for mechanically homogeneous and isotropic elastic solids. First, the uniqueness and reciprocal theorems of dynamic elasticity are extended to unbounded domains with the aid of a generalized energy identity and a lemma on the prolonged quiescence of the far field, which are established for this purpose. Next, the basic singular solutions of elastodynamics are studied and used to generate systematically Love's integral identity for the displacement field, as well as an associated identity for the field of stress. These results, in conjunction with suitably defined Green's functions, are applied to the construction of integral representations for the solution of the first and second boundary-initial value problem. Finally, a uniqueness theorem for dynamic concentrated-load problems is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines several examples of systems in which non-Abelian magnetic flux and non-Abelian forms of the Aharonov-Bohm effect play a role. We consider the dynamical consequences in these systems of some of the exotic phenomena associated with non-Abelian flux, such as Cheshire charge holonomy interactions and non-Abelian braid statistics. First, we use a mean-field approximation to study a model of U(2) non-Abelian anyons near its free-fermion limit. Some self-consistent states are constructed which show a small SU(2)-breaking charge density that vanishes in the fermionic limit. This is contrasted with the bosonic limit where the SU(2) asymmetry of the ground state can be maximal. Second, a global analogue of Chesire charge is described, raising the possibility of observing Cheshire charge in condensedmatter systems. A potential realization in superfluid He-3 is discussed. Finally, we describe in some detail a method for numerically simulating the evolution of a network of non-Abelian (S3) cosmic strings, keeping careful track of all magnetic fluxes and taking full account of their non-commutative nature. I present some preliminary results from this simulation, which is still in progress. The early results are suggestive of a qualitatively new, non-scaling behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores the dynamics of scale interactions in a turbulent boundary layer through a forcing-response type experimental study. An emphasis is placed on the analysis of triadic wavenumber interactions since the governing Navier-Stokes equations for the flow necessitate a direct coupling between triadically consist scales. Two sets of experiments were performed in which deterministic disturbances were introduced into the flow using a spatially-impulsive dynamic wall perturbation. Hotwire anemometry was employed to measure the downstream turbulent velocity and study the flow response to the external forcing. In the first set of experiments, which were based on a recent investigation of dynamic forcing effects in a turbulent boundary layer, a 2D (spanwise constant) spatio-temporal normal mode was excited in the flow; the streamwise length and time scales of the synthetic mode roughly correspond to the very-large-scale-motions (VLSM) found naturally in canonical flows. Correlation studies between the large- and small-scale velocity signals reveal an alteration of the natural phase relations between scales by the synthetic mode. In particular, a strong phase-locking or organizing effect is seen on directly coupled small-scales through triadic interactions. Having characterized the bulk influence of a single energetic mode on the flow dynamics, a second set of experiments aimed at isolating specific triadic interactions was performed. Two distinct 2D large-scale normal modes were excited in the flow, and the response at the corresponding sum and difference wavenumbers was isolated from the turbulent signals. Results from this experiment serve as an unique demonstration of direct non-linear interactions in a fully turbulent wall-bounded flow, and allow for examination of phase relationships involving specific interacting scales. A direct connection is also made to the Navier-Stokes resolvent operator framework developed in recent literature. Results and analysis from the present work offer insights into the dynamical structure of wall turbulence, and have interesting implications for design of practical turbulence manipulation or control strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I. Proton Magnetic Resonance of Polynucleotides and Transfer RNA.

Proton magnetic resonance was used to follow the temperature dependent intramolecular stacking of the bases in the polynucleotides of adenine and cytosine. Analysis of the results on the basis of a two state stacked-unstacked model yielded values of -4.5 kcal/mole and -9.5 kcal/mole for the enthalpies of stacking in polyadenylic and polycytidylic acid, respectively.

The interaction of purine with these molecules was also studied by pmr. Analysis of these results and the comparison of the thermal unstacking of polynucleotides and short chain nucleotides indicates that the bases contained in stacks within the long chain poly nucleotides are, on the average, closer together than the bases contained in stacks in the short chain nucleotides.

Temperature and purine studies were also carried out with an aqueous solution of formylmethionine transfer ribonucleic acid. Comparison of these results with the results of similar experiments with the homopolynucleotides of adenine, cytosine and uracil indicate that the purine is probably intercalating into loop regions of the molecule.

The solvent denaturation of phenylalanine transfer ribonucleic acid was followed by pmr. In a solvent mixture containing 83 volume per cent dimethylsulf oxide and 17 per cent deuterium oxide, the tRNA molecule is rendered quite flexible. It is possible to resolve resonances of protons on the common bases and on certain modified bases.

Part II. Electron Spin Relaxation Studies of Manganese (II) Complexes in Acetonitrile.

The electron paramagnetic resonance spectra of three Mn+2 complexes, [Mn(CH3CN)6]+2, [MnCl4]-2, and [MnBr4]-2, in acetonitrile were studied in detail. The objective of this study was to relate changes in the effective spin Hamiltonian parameters and the resonance line widths to the structure of these molecular complexes as well as to dynamical processes in solution.

Of the three systems studied, the results obtained from the [Mn(CH3CN)6]+2 system were the most straight-forward to interpret. Resonance broadening attributable to manganese spin-spin dipolar interactions was observed as the manganese concentration was increased.

In the [MnCl4]-2 system, solvent fluctuations and dynamical ion-pairing appear to be significant in determining electron spin relaxation.

In the [MnBr4]-2 system, solvent fluctuations, ion-pairing, and Br- ligand exchange provide the principal means of electron spin relaxation. It was also found that the spin relaxation in this system is dependent upon the field strength and is directly related to the manganese concentration. A relaxation theory based on a two state collisional model was developed to account for the observed behavior.