950 resultados para DYNAMIC FOREST DATA STRUCTURES
Resumo:
The common GIS-based approach to regional analyses of soil organic carbon (SOC) stocks and changes is to define geographic layers for which unique sets of driving variables are derived, which include land use, climate, and soils. These GIS layers, with their associated attribute data, can then be fed into a range of empirical and dynamic models. Common methodologies for collating and formatting regional data sets on land use, climate, and soils were adopted for the project Assessment of Soil Organic Carbon Stocks and Changes at National Scale (GEFSOC). This permitted the development of a uniform protocol for handling the various input for the dynamic GEFSOC Modelling System. Consistent soil data sets for Amazon-Brazil, the Indo-Gangetic Plains (IGP) of India, Jordan and Kenya, the case study areas considered in the GEFSOC project, were prepared using methodologies developed for the World Soils and Terrain Database (SOTER). The approach involved three main stages: (1) compiling new soil geographic and attribute data in SOTER format; (2) using expert estimates and common sense to fill selected gaps in the measured or primary data; (3) using a scheme of taxonomy-based pedotransfer rules and expert-rules to derive soil parameter estimates for similar soil units with missing soil analytical data. The most appropriate approach varied from country to country, depending largely on the overall accessibility and quality of the primary soil data available in the case study areas. The secondary SOTER data sets discussed here are appropriate for a wide range of environmental applications at national scale. These include agro-ecological zoning, land evaluation, modelling of soil C stocks and changes, and studies of soil vulnerability to pollution. Estimates of national-scale stocks of SOC, calculated using SOTER methods, are presented as a first example of database application. Independent estimates of SOC stocks are needed to evaluate the outcome of the GEFSOC Modelling System for current conditions of land use and climate. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
1. The UK Biodiversity Action Plan (UKBAP) identifies invertebrate species in danger of national extinction. For many of these species, targets for recovery specify the number of populations that should exist by a specific future date but offer no procedure to plan strategically to achieve the target for any species. 2. Here we describe techniques based upon geographic information systems (GIS) that produce conservation strategy maps (CSM) to assist with achieving recovery targets based on all available and relevant information. 3. The heath fritillary Mellicta athalia is a UKBAP species used here to illustrate the use of CSM. A phase 1 habitat survey was used to identify habitat polygons across the county of Kent, UK. These were systematically filtered using relevant habitat, botanical and autecological data to identify seven types of polygon, including those with extant colonies or in the vicinity of extant colonies, areas managed for conservation but without colonies, and polygons that had the appropriate habitat structure and may therefore be suitable for reintroduction. 4. Five clusters of polygons of interest were found across the study area. The CSM of two of them are illustrated here: the Blean Wood complex, which contains the existing colonies of heath fritillary in Kent, and the Orlestone Forest complex, which offers opportunities for reintroduction. 5. Synthesis and applications. Although the CSM concept is illustrated here for the UK, we suggest that CSM could be part of species conservation programmes throughout the world. CSM are dynamic and should be stored in electronic format, preferably on the world-wide web, so that they can be easily viewed and updated. CSM can be used to illustrate opportunities and to develop strategies with scientists and non-scientists, enabling the engagement of all communities in a conservation programme. CSM for different years can be presented to illustrate the progress of a plan or to provide continuous feedback on how a field scenario develops.
Resumo:
Long-term monitoring of forest soils as part of a pan-European network to detect environmental change depends on an accurate determination of the mean of the soil properties at each monitoring event. Forest soil is known to be very variable spatially, however. A study was undertaken to explore and quantify this variability at three forest monitoring plots in Britain. Detailed soil sampling was carried out, and the data from the chemical analyses were analysed by classical statistics and geostatistics. An analysis of variance showed that there were no consistent effects from the sample sites in relation to the position of the trees. The variogram analysis showed that there was spatial dependence at each site for several variables and some varied in an apparently periodic way. An optimal sampling analysis based on the multivariate variogram for each site suggested that a bulked sample from 36 cores would reduce error to an acceptable level. Future sampling should be designed so that it neither targets nor avoids trees and disturbed ground. This can be achieved best by using a stratified random sampling design.
Resumo:
In a recent investigation, Landsat TM and ETM+ data were used to simulate different resolutions of remotely-sensed images (from 30 to 1100 m) and to analyze the effect of resolution on a range of landscape metrics associated with spatial patterns of forest fragmentation in Chapare, Bolivia since the mid-1980s. Whereas most metrics were found to be highly dependent on pixel size, several fractal metrics (DLFD, MPFD, and AWMPFD) were apparently independent of image resolution, in contradiction with a sizeable body of literature indicating that fractal dimensions of natural objects depend strongly on image characteristics. The present re-analysis of the Chapare images, using two alternative algorithms routinely used for the evaluation of fractal dimensions, shows that the values of the box-counting and information fractal dimensions are systematically larger, sometimes by as much as 85%, than the "fractal" indices DLFD, MPFD, and AWMFD for the same images. In addition, the geometrical fractal features of the forest and non-forest patches in the Chapare region strongly depend on the resolution of images used in the analysis. The largest dependency on resolution occurs for the box-counting fractal dimension in the case of the non-forest patches in 1993, where the difference between the 30 and I 100 m-resolution images corresponds to 24% of the full theoretical range (1.0 to 2.0) of the mass fractal dimension. The observation that the indices DLFD, MPFD, and AWMPFD, unlike the classical fractal dimensions, appear relatively unaffected by resolution in the case of the Chapare images seems due essentially to the fact that these indices are based on a heuristic, "non-geometric" approach to fractals. Because of their lack of a foundation in fractal geometry, nothing guarantees that these indices will be resolution-independent in general. (C) 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
Resumo:
Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate changes in trace element concentration in two high resolution sequences of tree rings from central Sweden. Individual annual growth increments from 18002002 to 1930-2002 were sampled from two Scots pine (Pinus sylvestris) trees from the Siljansfors Experimental Forest. The aims of the study were: to test the viability of conventional solution induction ICP-MS as a technique for investigating the multi-elemental chemistry of long tree ring sequences at annual resolution, and, to test this specifically with a view to detecting changes in elemental concentrations of Swedish tree rings contemporary with the major (and relatively proximal) Icelandic eruption of Askja (1875). It was found that despite a time consuming sample preparation process, it was possible to use conventional ICP-MS for multi-elemental analysis of a long sequence of tree rings at annual resolution. Although promising data were produced, no truly conclusive concentration anomaly could be detected in the sequence to indicate the impact of the Askja eruption on environmental chemistry. Overall findings underlined the complexity of the tree/environment interaction and the cautious approach to data interpretation essential for any dendrochemical study. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The impacts of afforestation at Plynlimon in the Severn catchment, mid-Wales. and in the Bedford Ouse catchment in south-east England are evaluated using the INCA model to simulate Nitrogen (N) fluxes and concentrations. The INCA model represents the key hydrological and N processes operating in catchments and simulates the daily dynamic behaviour as well as the annual fluxes. INCA has been applied to five years of data front the Hafren and Hore headwater sub-catchments (6.8 km(2) area in total) of the River Severn at Plytilimon and the model was calibrated and validated against field data. Simulation of afforestation is achieved by altering the uptake rate parameters in the model. INCA simulates the daily N behaviour in the catchments with good accuracy as well as reconstructing the annual budgets for N release following clearfelling a four-fold increase in N fluxes was followed by a slow recovery after re-afforestation. For comparison, INCA has been applied to the large (8380 km(2)) Bedford Ouse catchment to investigate the impact of replacing 20% arable land with forestry. The reduction in fertiliser inputs from arable farming and the N uptake by the forest are predicted to reduce the N flux reaching the main river system, leading to a 33% reduction in N-Nitrate concentrations in the river water.
Resumo:
We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.
Resumo:
Empirical orthogonal functions (EOFs) are widely used in climate research to identify dominant patterns of variability and to reduce the dimensionality of climate data. EOFs, however, can be difficult to interpret. Rotated empirical orthogonal functions (REOFs) have been proposed as more physical entities with simpler patterns than EOFs. This study presents a new approach for finding climate patterns with simple structures that overcomes the problems encountered with rotation. The method achieves simplicity of the patterns by using the main properties of EOFs and REOFs simultaneously. Orthogonal patterns that maximise variance subject to a constraint that induces a form of simplicity are found. The simplified empirical orthogonal function (SEOF) patterns, being more 'local'. are constrained to have zero loadings outside the main centre of action. The method is applied to winter Northern Hemisphere (NH) monthly mean sea level pressure (SLP) reanalyses over the period 1948-2000. The 'simplified' leading patterns of variability are identified and compared to the leading patterns obtained from EOFs and REOFs. Copyright (C) 2005 Royal Meteorological Society.
Progress on “Changing coastlines: data assimilation for morphodynamic prediction and predictability”
Resumo:
The task of assessing the likelihood and extent of coastal flooding is hampered by the lack of detailed information on near-shore bathymetry. This is required as an input for coastal inundation models, and in some cases the variability in the bathymetry can impact the prediction of those areas likely to be affected by flooding in a storm. The constant monitoring and data collection that would be required to characterise the near-shore bathymetry over large coastal areas is impractical, leaving the option of running morphodynamic models to predict the likely bathymetry at any given time. However, if the models are inaccurate the errors may be significant if incorrect bathymetry is used to predict possible flood risks. This project is assessing the use of data assimilation techniques to improve the predictions from a simple model, by rigorously incorporating observations of the bathymetry into the model, to bring the model closer to the actual situation. Currently we are concentrating on Morecambe Bay as a primary study site, as it has a highly dynamic inter-tidal zone, with changes in the course of channels in this zone impacting the likely locations of flooding from storms. We are working with SAR images, LiDAR, and swath bathymetry to give us the observations over a 2.5 year period running from May 2003 – November 2005. We have a LiDAR image of the entire inter-tidal zone for November 2005 to use as validation data. We have implemented a 3D-Var data assimilation scheme, to investigate the improvements in performance of the data assimilation compared to the previous scheme which was based on the optimal interpolation method. We are currently evaluating these different data assimilation techniques, using 22 SAR data observations. We will also include the LiDAR data and swath bathymetry to improve the observational coverage, and investigate the impact of different types of observation on the predictive ability of the model. We are also assessing the ability of the data assimilation scheme to recover the correct bathymetry after storm events, which can dramatically change the bathymetry in a short period of time.
Resumo:
In April–July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rainforest" (OP3) project. Fluxes and concentrations of trace gases and particles were made from and above the rainforest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest site was not significantly impacted by anthropogenic pollution, and this is confirmed by satellite retrievals of NO2 and HCHO. The dominant modulators of atmospheric chemistry at the rainforest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NOx volume mixing ratio (~100 pptv/pptv), current chemical models suggest that daytime maximum OH concentrations should be ca. 105 radicals cm−3, but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements that suggest that an unexplained source of OH must exist above tropical rainforest and we continue to interrogate the data to find explanations for this.
Resumo:
Intercontinental Transport of Ozone and Precursors (ITOP) (part of International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)) was an intense research effort to measure long-range transport of pollution across the North Atlantic and its impact on O3 production. During the aircraft campaign plumes were encountered containing large concentrations of CO plus other tracers and aerosols from forest fires in Alaska and Canada. A chemical transport model, p-TOMCAT, and new biomass burning emissions inventories are used to study the emissions long-range transport and their impact on the troposphere O3 budget. The fire plume structure is modeled well over long distances until it encounters convection over Europe. The CO values within the simulated plumes closely match aircraft measurements near North America and over the Atlantic and have good agreement with MOPITT CO data. O3 and NOx values were initially too great in the model plumes. However, by including additional vertical mixing of O3 above the fires, and using a lower NO2/CO emission ratio (0.008) for boreal fires, O3 concentrations are reduced closer to aircraft measurements, with NO2 closer to SCIAMACHY data. Too little PAN is produced within the simulated plumes, and our VOC scheme's simplicity may be another reason for O3 and NOx model-data discrepancies. In the p-TOMCAT simulations the fire emissions lead to increased tropospheric O3 over North America, the north Atlantic and western Europe from photochemical production and transport. The increased O3 over the Northern Hemisphere in the simulations reaches a peak in July 2004 in the range 2.0 to 6.2 Tg over a baseline of about 150 Tg.
Resumo:
A new snow-soil-vegetation-atmosphere transfer (Snow-SVAT) scheme, which simulates the accumulation and ablation of the snow cover beneath a forest canopy, is presented. The model was formulated by coupling a canopy optical and thermal radiation model to a physically-based multi-layer snow model. This canopy radiation model is physically-based yet requires few parameters, so can be used when extensive in-situ field measurements are not available. Other forest effects such as the reduction of wind speed, interception of snow on the canopy and the deposition of litter were incorporated within this combined model, SNOWCAN, which was tested with data taken as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) international collaborative experiment. Snow depths beneath four different canopy types and at an open site were simulated. Agreement between observed and simulated snow depths was generally good, with correlation coefficients ranging between r^2=0.94 and r^2=0.98 for all sites where automatic measurements were available. However, the simulated date of total snowpack ablation generally occurred later than the observed date. A comparison between simulated solar radiation and limited measurements of sub-canopy radiation at one site indicates that the model simulates the sub-canopy downwelling solar radiation early in the season to within measurement uncertainty.
Resumo:
One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.
Resumo:
Students may have difficulty in understanding some of the complex concepts which they have been taught in the general areas of science and engineering. Whilst practical work such as a laboratory based examination of the performance of structures has an important role in knowledge construction this does have some limitations. Blended learning supports different learning styles, hence further benefits knowledge building. This research involves an empirical study of how vodcasts (video-podcasts) can be used to enrich learning experience in the structural properties of materials laboratory of an undergraduate course. Students were given the opportunity of downloading and viewing the vodcasts on the theory before and after the experimental work. It is the choice of the students when (before or after, before and after) and how many times they would like to view the vodcasts. In blended learning, the combination of face-to-face teaching, vodcasts, printed materials, practical experiments, writing reports and instructors’ feedbacks benefits different learning styles of the learners. For the preparation of the practical, the students were informed about the availability of the vodcasts prior to the practical session. After the practical work, students submitted an individual laboratory report for the assessment of the structures laboratory. The data collection consisted of a questionnaire completed by the students, follow-up semi-structured interviews and the practical reports submitted by them for assessment. The results from the questionnaire were analysed quantitatively, whilst the data from the assessment reports were analysed qualitatively. The analysis shows that most of the students who have not fully grasped the theory after the practical, managed to gain the required knowledge by viewing the vodcasts. According to their feedbacks, the students felt that they have control over how to use the material and to view it as many times as they wish. Some students who have understood the theory may choose to view it once or not at all. Their understanding was demonstrated by their explanations in their reports, and was illustrated by the approach they took to explicate the results of their experimental work. The research findings are valuable to instructors who design, develop and deliver different types of blended learning, and are beneficial to learners who try different blended approaches. Recommendations were made on the role of the innovative application of vodcasts in the knowledge construction for structures laboratory and to guide future work in this area of research.
Resumo:
Students may have difficulty in understanding some of the complex concepts which they have been taught in the general areas of science and engineering. Whilst practical work such as a laboratory based examination of the performance of structures has an important role in knowledge construction this does have some limitations. Blended learning supports different learning styles, hence further benefits knowledge building. This research involves the empirical studies of how an innovative use of vodcasts (video-podcasts) can enrich learning experience in the structural properties of materials laboratory of an undergraduate course. Students were given the opportunity of downloading and viewing the vodcasts on the theory before and after the experimental work. It is the choice of the students when (before or after, before and after) and how many times they would like to view the vodcasts. In blended learning, the combination of face-to-face teaching, vodcasts, printed materials, practical experiments, writing reports and instructors’ feedbacks benefits different learning styles of the learners. For the preparation of the practical laboratory work, the students were informed about the availability of the vodcasts prior to the practical session. After the practical work, students submit an individual laboratory report for the assessment of the structures laboratory. The data collection consists of a questionnaire completed by the students, and the practical reports submitted by them for assessment. The results from the questionnaire were analysed quantitatively, whilst the data from the assessment reports were analysed qualitatively. The analysis shows that students who have not fully grasped the theory after the practical were successful in gaining the required knowledge by viewing the vodcasts. Some students who have understood the theory may choose to view it once or not at all. Their understanding was demonstrated by the quality of their explanations in their reports. This is illustrated by the approach they took to explicate the results of their experimental work, for example, they can explain how to calculate the Young’s Modulus properly and provided the correct value for it. The research findings are valuable to instructors who design, develop and deliver different types of blended learning, and beneficial to learners who try different blended approaches. Recommendations were made on the role of the innovative application of vodcasts in the knowledge construction for structures laboratory and to guide future work in this area of research.