975 resultados para DNA-Binding Proteins


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previously, we reported on the discovery and characterization of a mammalian chromatin-associated protein, CHD1 (chromo-ATPase/helicase-DNA-binding domain), with features that led us to suspect that it might have an important role in the modification of chromatin structure. We now report on the characterization of the Drosophila melanogaster CHD1 homologue (dCHD1) and its localization on polytene chromosomes. A set of overlapping cDNAs encodes an 1883-aa open reading frame that is 50% identical and 68% similar to the mouse CHD1 sequence, including conservation of the three signature domains for which the protein was named. When the chromo and ATPase/helicase domain sequences in various CHD1 homologues were compared with the corresponding sequences in other proteins, certain distinctive features of the CHD1 chromo and ATPase/helicase domains were revealed. The dCHD1 gene was mapped to position 23C-24A on chromosome 2L. Western blot analyses with antibodies raised against a dCHD1 fusion protein specifically recognized an approximately 210-kDa protein in nuclear extracts from Drosophila embryos and cultured cells. Most interestingly, these antibodies revealed that dCHD1 localizes to sites of extended chromatin (interbands) and regions associated with high transcriptional activity (puffs) on polytene chromosomes from salivary glands of third instar larvae. These observations strongly support the idea that CHD1 functions to alter chromatin structure in a way that facilitates gene expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Determination of the crystal structure of an "open" unliganded active mutant (T141D) form of the Escherichia coli phosphate receptor for active transport has allowed calculation of the electrostatic surface potential for it and two other comparably modeled receptor structures (wild type and D137N). A discovery of considerable implication is the intensely negative potential of the phosphate-binding cleft. We report similar findings for a sulfate transport receptor, a DNA-binding protein, and, even more dramatically, redox proteins. Evidently, for proteins such as these, which rely almost exclusively on hydrogen bonding for anion interactions and electrostatic balance, a noncomplementary surface potential is not a barrier to binding. Moreover, experimental results show that the exquisite specificity and high affinity of the phosphate and sulfate receptors for unions are insensitive to modulations of charge potential, but extremely sensitive to conditions that leave a hydrogen bond donor or acceptor unpaired.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stage specific activator protein (SSAP) is a member of a newly discovered class of transcription factors that contain motifs more commonly found in RNA-binding proteins. Previously, we have shown that SSAP specifically binds to its recognition sequence in both the double strand and the single strand form and that this DNA-binding activity is localized to the N-terminal RNA recognition motif domain. Three copies of this recognition sequence constitute an enhancer element that is directly responsible for directing the transcriptional activation of the sea urchin late histone H1 gene at the midblastula stage of embryogenesis. Here we show that the remainder of the SSAP polypeptide constitutes an extremely potent bipartite transcription activation domain that can function in a variety of mammalian cell lines. This activity is as much as 3 to 5 times stronger than VP16 at activating transcription and requires a large stretch of amino acids that contain glutamine-glycine rich and serine-threonine-basic amino acid rich regions. We present evidence that SSAP's activation domain shares targets that are also necessary for activation by E1a and VP16. Finally, SSAP's activation domain is found to participate in specific interactions in vitro with the basal transcription factors TATA-binding protein, TFIIB, TFIIF74, and dTAF(II) 110.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors is a heterooligomeric membrane protein composed of homologous subunits. Here, the contribution of the M3-M4 loop of the NR1 subunit to the binding of glutamate and the co-agonist glycine was investigated by site-directed mutagenesis. Substitution of the phenylalanine residues at positions 735 or 736 of the M3-M4 loop produced a 15- to 30-fold reduction in apparent glycine affinity without affecting the binding of glutamate and the competitive glycine antagonist 7-chlorokynurenic acid; mutation of both residues caused a >100-fold decrease in glycine affinity. These residues are found in a C-terminal region of the M3-M4 loop that shows significant sequence similarity to bacterial amino acid-binding proteins. Epitope tagging revealed both the N-terminus and the M3-M4 loop to be exposed extracellularly, whereas a C-terminal epitope was localized intracellularly. These results indicate that the M3-M4 loop is part of the ligand-binding pocket of the NR1 subunit and provide the basis for a refined model of the glycine-binding site of the NMDA receptor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glycosylphosphatidylinositol (GPI)-anchored proteins are nonmembrane spanning cell surface proteins that have been demonstrated to be signal transduction molecules. Because these proteins do not extend into the cytoplasm, the mechanism by which cross-linking of these molecules leads to intracellular signal transduction events is obscure. Previous analysis has indicated that these proteins are associated with src family member tyrosine kinases; however, the role this interaction plays in the generation of intracellular signals is not clear. Here we show that GPI-anchored proteins are associated with alpha subunits of heterotrimeric GTP binding proteins (G proteins) in both human and murine lymphocytes. When the GPI-anchored proteins CD59, CD48, and Thy-1 were immunoprecipitated from various cell lines or freshly isolated lymphocytes, all were found to be associated with a 41-kDa phosphoprotein that we have identified, by using specific antisera, as a mixture of tyrosine phosphorylated G protein alpha subunits: a small amount of Gialpha1, and substantial amounts of Gialpha2 and Gialpha3. GTP binding assays performed with immunoprecipitations of CD59 indicated that there was GTP-binding activity associated with this molecule. Thus, we have shown by both immunochemical and functional criteria that GPI-anchored proteins are physically associated with G proteins. These experiments suggest a potential role of G proteins in the transduction of signals generated by GPI-anchored molecules expressed on lymphocytes of both mouse and human.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The yeast two-hybrid system was used to isolate a clone from a 17-day-old mouse embryo cDNA library that codes for a novel 812-aa long protein fragment, glucocorticoid receptor-interacting protein 1 (GRIP1), that can interact with the hormone binding domain (HBD) of the glucocorticoid receptor. In the yeast two-hybrid system and in vitro, GRIP1 interacted with the HBDs of the glucocorticoid, estrogen, and androgen receptors in a hormone-regulated manner. When fused to the DNA binding domain of a heterologous protein, the GRIP1 fragment activated a reporter gene containing a suitable enhancer site in yeast cells and in mammalian cells, indicating that GRIP1 contains a transcriptional activation domain. Overexpression of the GRIP1 fragment in mammalian cells interfered with hormone-regulated expression of mouse mammary tumor virus-chloramphenicol acetyltransferase gene and constitutive expression of cytomegalovirus-beta-galactosidase reporter gene, but not constitutive expression from a tRNA gene promoter. This selective squelching activity suggests that GRIM can interact with an essential component of the RNA polymerase II transcription machinery. Finally, while a steroid receptor HBD fused with a GAL4 DNA binding domain did not, by itself, activate transcription of a reporter gene in yeast, coexpression of this fusion protein with GRIP1 strongly activated the reporter gene. Thus, in yeast, GRIP1 can serve as a coactivator, potentiating the transactivation functions in steroid receptor HBDs, possibly by acting as a bridge between HBDs of the receptors and the basal transcription machinery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) is caused by a defect in nucleotide excision repair. Patients in the complementation group E (XP-E) have the mildest form of the disease and the highest level of residual repair activity. About 20% of the cell strains derived from XP-E patients lack a damaged DNA-binding protein (DDB) activity that binds to ultraviolet-induced (6-4) photoproducts with high affinity. We report here that cell-free extracts prepared from XP-E cell strains that either lacked or contained DDB activity were severely defective in excising DNA damage including (6-4) photoproducts. However, this excision activity defect was not restored by addition of purified DDB that, in fact, inhibited removal of (6-4) photoproducts by the human excision nuclease reconstituted from purified proteins. Extensive purification of correcting activity from HeLa cells revealed that the correcting activity is inseparable from the human replication/repair protein A [RPA (also known as human single stranded DNA binding protein, HSSB)]. Indeed, supplementing XP-E extracts with recombinant human RPA purified from Escherichia coli restored excision activity. However, no mutation was found in the genes encoding the three subunits of RPA in an XP-E (DDB-) cell line. It is concluded that RPA functionally complements XP-E extracts in vitro, but it is not genetically altered in XP-E patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clinically important mutant p53 proteins may be tumorigenic through a dominant-negative mechanism or due to a gain-of-function. Examples for both hypotheses have been described; however, it remains unclear to what extent they apply to TP53 mutations in general. Here it is shown that the mutational spectrum of dominant-negative p53 mutants selected in a novel yeast assay correlates tightly with p53 mutations in cancer. Two classes of dominant-negative mutations are described; the more dominant one affects codons that are essential for the stabilization of the DNA-binding surface of the p53 core domain and for the direct interaction of p53 with its DNA binding sites. These results predict that the vast majority of TP53 mutations leading to cancer do so in a dominant-negative fashion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transposon Tn1000 has been adapted to deliver novel DNA sequences for manipulating recombinant DNA. The transposition procedure for these "tagged" Tn1000s is simple and applicable to most plasmids in current use. For yeast molecular biology, tagged Tn1000s introduce a variety of yeast selective markers and replication origins into plasmids and cosmids. In addition, the beta-globin minimal promoter and lacZ gene of Tn(beta)lac serve as a mobile reporter of eukaryotic enhancer activity. In this paper, Tn(beta)lac was used to localize a mouse HoxB-complex enhancer in transgenic mice. Other tagged transposons create Gal4 DNA-binding-domain fusions, in either Escherichia coli or yeast plasmids, for use in one- and two-hybrid tests of transcriptional activation and protein-protein interaction, respectively. With such fusions, the Saccharomyces cerevisiae Swi6 G1/S-phase transcription factor and the Xenopus laevis Pintallavis developmental regulator are shown to activate transcription. Furthermore, the same transposon insertions also facilitated mapping of the Swi6 and Pintallavis domains responsible for transcriptional activation. Thus, as well as introducing novel sequences, tagged transposons share the numerous other applications of transposition such as producing insertional mutations, creating deletion series, or serving as mobile primer sites for DNA sequencing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To identify changes in gene expression that occur in chicken embryo brain (CEB) cells as a consequence of their binding to the extracellular matrix molecule cytotactin/tenascin (CT/TN), a subtractive hybridization cloning strategy was employed. One of the cDNA clones identified was predicted to encode 381 amino acids and although it did not resemble any known sequences in the nucleic acid or protein data bases, it did contain the sequence motif for the cysteine-rich C3HC4 type of zinc finger, also known as a RING-finger. This sequence was therefore designated the chicken-RING zinc finger (C-RZF). In addition to the RING-finger, the C-RZF sequence also contained motifs for a leucine zipper, a nuclear localization signal, and a stretch of acidic amino acids similar to the activation domains of some transcription factors. Southern analysis suggested that C-RZF is encoded by a single gene. Northern and in situ hybridization analyses of E8 chicken embryo tissues indicated that expression of the C-RZF gene was restricted primarily to brain and heart. Western analysis of the nuclear and cytoplasmic fractions of chicken embryo heart cells and immunofluorescent staining of chicken embryo cardiocytes with anti-C-RZF antibodies demonstrated that the C-RZF protein was present in the nucleus. The data suggest that we have identified another member of the RING-finger family of proteins whose expression in CEB cells may be affected by CT/TN and whose nuclear localization and sequence motifs predict a DNA-binding function in the nucleus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

EP is a DNA element found in the enhancer and promoter regions of several cellular and viral genes. Previously, we have identified the DNA binding p140/c-Abl protein that specifically recognizes this element. Here we show that phosphorylation is essential for the p140/c-Abl DNA binding activity and for the formation of DNA-protein complexes. Furthermore, by 32P labeling of cells and protein purification, we demonstrate that in vivo the EP-DNA-associated p140/c-Abl is a tyrosine phosphoprotein. By employing two different c-Abl antibodies, we demonstrate the existence of two distinct c-Abl populations in cellular extracts. p140/c-Abl is quantitatively the minor population, is heavily phosphorylated at both serine and tyrosine residues, and is active in autophosphorylation reactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a previous study we showed that the murine homeodomain protein Msx-1 is a potent transcriptional repressor and that this activity is independent of its DNA binding function. The implication of these findings is that repression by Msx-1 is mediated through its association with certain protein factors rather than through its interaction with DNA recognition sites, which prompted investigation of the relevant protein factors. Here we show that Msx-1 interacts directly with the TATA binding protein (TBP) but not with several other general transcription factors. This interaction is mediated by the Msx-1 homeodomain, specifically through residues in the N-terminal arm. These same N-terminal arm residues are required for repression by Msx-1, suggesting a functional relationship between TBP association and transcriptional repression. This is further supported by the observation that addition of excess TBP blocks the repressor action of Msx-1 in in vitro transcription assays. Finally, DNA binding activity is separable from both TBP interaction and repression, which further shows that these other activities of the Msx-1 homeodomain are distinct. Therefore, these findings define a role for the Msx-1 homeodomain, particularly the N-terminal arm residues in protein-protein interaction and transcriptional repression, and implicate a more complex role overall for homeodomains in transcriptional regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The alpha subunits of the heterotrimeric guanine nucleotide-binding proteins (G proteins) hydrolyze GTP at a rate significantly higher than do most members of the Ras family of approximatelly 20-kDa GTP-binding proteins, which depend on a GTPase-activating protein (GAP) for acceleration of GTP hydrolysis. It has been demonstrated that an inserted domain in the G-protein alpha subunit, not present in the much smaller Ras-like proteins, is responsible for this difference [Markby, D. W., Onrust, R. & Bourne, H. R. (1993) Science 262, 1895-1900]. We report here that ARD1, a 64-kDa protein with an 18-kDa carboxyl-terminal ADP-ribosylation factor (ARF) domain, exhibited significant GTPase activity, whereas the ARF domain, expressed as a recombinant protein in Escherichia coli, did not. Addition of the 46-kDa amino-terminal extension (similarly synthesized in E. coli) to the GTP-binding ARF-domain of ARD1 enhanced GTPase activity and inhibited GDP dissociation. The kinetic properties of mixtures of the ARF and non-ARF domains were similar to those of an intact recombinant ARD1. Physical association of the two proteins was demonstrated directly by gel filtration and by using the immobilized non-ARF domain. Thus, like the alpha subunits of heterotrimeric G proteins, ARD1 appears to consist of two domains that interact to regulate the biological activity of the protein.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The kinetics of amyloid fibril formation by beta-amyloid peptide (Abeta) are typical of a nucleation-dependent polymerization mechanism. This type of mechanism suggests that the study of the interaction of Abeta with itself can provide some valuable insights into Alzheimer disease amyloidosis. Interaction of Abeta with itself was explored with the yeast two-hybrid system. Fusion proteins were created by linking the Abeta fragment to a LexA DNA-binding domain (bait) and also to a B42 transactivation domain (prey). Protein-protein interactions were measured by expression of these fusion proteins in Saccharomyces cerevisiae harboring lacZ (beta-galactosidase) and LEU2 (leucine utilization) genes under the control of LexA-dependent operators. This approach suggests that the Abeta molecule is capable of interacting with itself in vivo in the yeast cell nucleus. LexA protein fused to the Drosophila protein bicoid (LexA-bicoid) failed to interact with the B42 fragment fused to Abeta, indicating that the observed Abeta-Abeta interaction was specific. Specificity was further shown by the finding that no significant interaction was observed in yeast expressing LexA-Abeta bait when the B42 transactivation domain was fused to an Abeta fragment with Phe-Phe at residues 19 and 20 replaced by Thr-Thr (AbetaTT), a finding that is consistent with in vitro observations made by others. Moreover, when a peptide fragment bearing this substitution was mixed with native Abeta-(1-40), it inhibited formation of fibrils in vitro as examined by electron microscopy. The findings presented in this paper suggest that the two-hybrid system can be used to study the interaction of Abeta monomers and to define the peptide sequences that may be important in nucleation-dependent aggregation.