939 resultados para DNA DETECTION
Resumo:
To determine whether Sertoli cells influence DNA synthesis by rat peritubular myoid cells in vitro, the effects of Sertoli cells on [3H]thymidine incorporation by peritubular myoid cells in a coculture situation were examined. Incubation of testicular peritubular myoid cells with Sertoli cells in coculture induced a significant increase in [3H]thymidine incorporation by peritubular myoid cells. This indicates a cell-cell cooperation between Sertoli and peritubular myoid cells in the testis in terms of DNA synthesis. Secreted factors from Sertoli cells, as tested in a parabiotic culture situation, also increased [3H]thymidine incorporation by peritubular myoid cells. Moreover, in terms of total cellular protein, cocultures of Sertoli cells and peritubular myoid cells resulted in a significant increase when compared with the monocultures, and this coculture effect substituted for the stimulatory response of serum on peritubular myoid cell monoculture. This study investigated the cooperative role of Sertoli cells and peritubular myoid cells in paracrine regulation of testicular functions.
Resumo:
This thesis developed a new method for measuring extremely low amounts of organic and biological molecules, using Surface enhanced Raman Spectroscopy. This method has many potential applications, e.g. medical diagnosis, public health, food provenance, antidoping, forensics and homeland security. The method development used caffeine as the small molecule example, and erythropoietin (EPO) as the large molecule. This method is much more sensitive and specific than currently used methods; rapid, simple and cost effective. The method can be used to detect target molecules in beverages and biological fluids without the usual preparation steps.
Resumo:
The present study was conducted to investigate whether ob- servers are equally prone to overlook any kinds of visual events in change blindness. Capitalizing on the finding from visual search studies that abrupt appearance of an object effectively captures observers' attention, the onset of a new object and the offset of an existing object were contrasted regarding their detectability when they occurred in a naturalistic scene. In an experiment, participants viewed a series of photograph pairs in which layouts of seven or eight objects were depicted. One object either appeared in or disappeared from the layout, and participants tried to detect this change. Results showed that onsets were detected more quickly than offsets, while they were detected with equivalent ac- curacy. This suggests that the primacy of onset over offset is a robust phenomenon that likely makes onsets more resistant to change blindness under natural viewing conditions.
Resumo:
Banana bunchy top disease (BBTD) caused by banana bunchy top virus (BBTV) was radioactively detected by nucleic acid hybridization techniques. Results showed that, 32P-labelled insert of pBT338 was hybridized with nucleic acid extracts from BBTV-infected plants from Egypt and Australia but not with those from CMV-infected plants from Egypt. Results revealed that BBTV was greatly detected in midrib, roots, meristem, corm, leaves and pseudostem respectively. BBTV was also detected in symptomless young plants prepared from diseased plant materials grown under tissue culture conditions but was not present in those performed from healthy plant materials. The sensitivity of dot blot and Southern blot hybridizations for the detection of BBTV was also performed for the detection of BBTV.
Resumo:
We present a proof of concept for a novel nanosensor for the detection of ultra-trace amounts of bio-active molecules in complex matrices. The nanosensor is comprised of gold nanoparticles with an ultra-thin silica shell and antibody surface attachment, which allows for the immobilization and direct detection of bio-active molecules by surface enhanced Raman spectroscopy (SERS) without requiring a Raman label. The ultra-thin passive layer (~1.3 nm thickness) prevents competing molecules from binding non-selectively to the gold surface without compromising the signal enhancement. The antibodies attached on the surface of the nanoparticles selectively bind to the target molecule with high affinity. The interaction between the nanosensor and the target analyte result in conformational rearrangements of the antibody binding sites, leading to significant changes in the surface enhanced Raman spectra of the nanoparticles when compared to the spectra of the un-reacted nanoparticles. Nanosensors of this design targeting the bio-active compounds erythropoietin and caffeine were able to detect ultra-trace amounts the analyte to the lower quantification limits of 3.5×10−13 M and 1×10−9 M, respectively.
Resumo:
The capacity to identify an unknown organism using the DNA sequence from a single gene has many applications. These include the development of biodiversity inventories (Janzen et al. 2005), forensics (Meiklejohn et al. 2011), biosecurity (Armstrong and Ball 2005), and the identification of cryptic species (Smith et al. 2006). The popularity and widespread use (Teletchea 2010) of the DNA barcoding approach (Hebert et al. 2003), despite broad misgivings (e.g., Smith 2005; Will et al. 2005; Rubinoff et al. 2006), attest to this. However, one major shortcoming to the standard barcoding approach is that it assumes that gene trees and species trees are synonymous, an assumption that is known not to hold in many cases (Pamilo and Nei 1988; Funk and Omland 2003). Biological processes that violate this assumption include incomplete lineage sorting and interspecific hybridization (Funk and Omland 2003). Indeed, simulation studies indicate that the concatenation approach (in which these two processes are ignored) can lead to statistically inconsistent estimation of the species tree (Kubatko and Degnan 2007)...
Resumo:
The SOS screen, as originally described by Perkins et al. (1999), was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS+ candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS+ candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS+ candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.
Resumo:
Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.
Resumo:
We report a tunable alternating current electrohydrodynamic (ac-EHD) force which drives lateran fluid motion within a few nanometers of an electrode surface. Because the magnitude of this fluid shear force can be tuned externally (e.g., via the application of an ac electric field), it provides a new capability to physically displace weakly (nonspecifically) bound cellular analytes. To demonstrate the utility of the tunable nanoshearing phenomenon, we present data on purpose-built microfluidic devices that employ ac-EHD force to remove nonspecific adsorption of molecular and cellular species. Here, we show that an ac-EHD device containing asymmetric planar and microtip electrode pairs resulted in a 4-fold reduction in nonspecific adsorption of blood cells and also captured breast cancer cells in blood, with high efficiency (approximately 87%) and specificity. We therefore feel that this new capability of externally tuning and manipulating fluid flow could have wide applications as an innovative approach to enhance the specific capture of rare cells such as cancer cells in blood.