954 resultados para DISSOCIATIVE ADSORPTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen adsorption on a surface of a non-porous reference material is widely used in the characterization. Traditionally, the enhancement of solid-fluid potential in a porous solid is accounted for by incorporating the surface curvature into the solid-fluid Potential of the flat reference surface. However, this calculation procedure has not been justified experimentally. In this paper, we derive the solid-fluid potential of mesoporous MCM-41 solid by using solely the adsorption isotherm of that solid. This solid-fluid potential is then compared with that of the non-porous reference surface. In derivation of the solid-fluid potential for both reference surface and mesoporous MCM-41 silica (diameter ranging front 3 to 6.5 nm) we employ the nonlocal density functional theory developed for amorphous solids. It is found that, to out, surprise, the solid-fluid potential of a porous solid is practically the same as that for the reference surface, indicating that there is no enhancement due to Surface curvature. This requires further investigations to explain this unusual departure from our conventional wisdom of curvature-induced enhancement. Accepting the curvature-independent solid-fluid potential derived from the non-porous reference surface, we analyze the hysteresis features of a series of MCM-41 samples. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Monte Carlo simulation method is Used 10 study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shelf and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 11111 using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the Surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid Surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grand canonical Monte Carlo simulations were applied to the adsorption of SPCE model water in finite graphitic pores with different configurations of carbonyl functional groups on only one surface and several pore sizes. It was found that almost all finite pores studied exhibit capillary condensation behaviour preceded by adsorption around the functional groups. Desorption showed the reverse transitions from a filled to a near empty pore resulting in a clear hysteresis loop in all pores except for some of the configurations of the 1.0nm pore. Carbonyl configurations had a strong effect on the filling pressure of all pores except, in some cases, in 1.0nm pores. A decrease in carbonyl neighbour density would result in a higher filling pressure. The emptying pressure was negligibly affected by the configuration of functional groups. Both the filling and emptying pressures increased with increasing pore size but the effect on the emptying pressure was much less. At pressures lower than the pore filling pressure, the adsorption of water was shown to have an extremely strong dependence on the neighbour density with adsorption changing from Type IV to Type III to linear as the neighbour density decreased. The isosteric heat was also calculated for these configurations to reveal its strong dependence on the neighbour density. These results were compared with literature experimental results for water and carbon black and found to qualitatively agree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of intermolecular potential models on the adsorption of benzene on graphitized thermal carbon black at various temperatures is investigated. Two models contain only dispersive sites, whereas the other two models account explicitly for the dispersive and electrostatic sites. Using numerous data in the literature on benzene adsorption on graphitized thermal carbon black at various temperatures, we have found that the effect of surface mediation on interaction between adsorbed benzene molecules must be accounted for to describe correctly the adsorption isotherm as well as the isosteric heat. Among the two models with partial charges tested, the WSKS model of Wick et at. I that has only six dispersive sites and three discrete partial charges is better than the very expensive all-atom model of Jorgensen and Severance.(2) Adsorbed benzene molecules on graphitized thermal carbon black have a complex orientation with respect to distance from the surface and also with respect to loading. At low loadings, they adopt the parallel configuration relative to the graphene surface, whereas at higher loadings (still less than monolayer coverage) some molecules adopt a slant orientation to maximize the fluid-fluid interaction. For loadings in the multilayer region, the orientation of molecules in the first layer is influenced by the presence of molecules in the second layer. The data that are used in this article come from the work of Isirikyan and Kiselev,(3) Pierotti and Smallwood,(4) Pierce and Ewing,(5) Belyakova, Kiselev, and Kovaleva,(6) and Carrott et al.(7)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural variation of Norit RI Extra activated carbon, progressively heated at 1373 K, was explored in terms of pore size and pore wall thickness distributions, for various periods of heating time, determined by argon adsorption at 87 K, both using an infinite as well as and finite wall thickness model. The latter approach has recently been developed in our laboratory and has been applied to several virgin carbons. The current results show significant variations in small pore size regions (< 7 angstrom) in association with strong growth of thick walls having at least three carbon sheets, as a result of heat treatment. In particular, shrinkage of the smallest pores due to strong interaction between their opposite walls as well as smoothening of carbon wall surfaces due to an increase in graphitization degree under thermal treatment have been found. Further, the results of pore wall thickness distribution are well corroborated by X-ray diffraction. The results of pore size and pore wall thickness distributions are also shown to be consistent with transmission electron microscopy analyses. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvation. pressure due to adsorption of fluids in porous materials is the cause of elastic deformation of an adsorbent, which is accessible to direct experimental measurements. Such a deformation contributes to the Helmholtz free energy of the whole adsorbent-adsorbate system due to accumulation of compression or tension energy by the solid. It means that in the general case the solid has to be considered as not solely a source of the external potential field for the fluid confined in the pore volume, but also as thermodynamically nonmert component of the solid-fluid system. We present analysis of nitrogen adsorption isotherms and heat of adsorption in slit graphitic pores accounting for the adsorption deformation by means of nonlocal density functional theory. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied an in vitro model of continuous venovenous haemofiltration to determine levofloxacin adsorption by polyacrylonitrile (PAN) filters. Four doses of levofloxacin (5, 25, 50 and 100 mg) were used, resulting in circulating concentrations of levofloxacin at 120 min of 3.56 +/- 0.14, 15.84 +/- 2.08, 31.42 +/- 1.95 and 58.23 +/- 1.10 mg/L, respectively. Adsorption at 2 h was 0.65 +/- 0.17, 5.99 +/- 2.49, 12.30 +/- 2.34 and 30.13 +/- 1.32 mg, respectively (P < 0.001). From 2 h to 4 h, increasing the blood pump rate and the ultrafiltration rate had no effect on adsorption. When the concentration was decreased from 3.55 +/- 0.13 mg/L at 4 h to 2.16 +/- 0.11 mg/L at 5 h by addition of lactated Ringer's solution, adsorption decreased from 0.67 +/- 0.16 mg to 0.21 +/- 0.25 mg (P < 0.05). These data show that adsorption of levofloxacin by PAN haemofilters is concentration dependent and reversible in vitro and suggest that adsorption by haemofilters is unlikely to affect levofloxacin pharmacokinetics significantly in vivo. (c) 2006 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A barrier to the domestication of the phosphorus (P) sensitive Australian species Caustis blakei (Cyperaceae) is the standard production systems used commercially which invariably result in problems associated either with P deficiency or P toxicity. This paper reports on the growth responses of Caustis blakei cv. M63 to applications of fertiliser P as either monocalcium phosphate (MCP) or granulated Guano Gold (R) rock phosphate (RP) in two soils with different capacities to adsorb P. The Caustis M63 plants grown in the two soils did not show P toxicity symptoms when fertilised with RP, but shoot dry weight was 30-60% lower than the control in both soils at the highest rate of MCP-P application (156 kg ha(-1), 184 g m(-3)) and this was associated with visible symptoms of drying of the tips of the ultimate branchlets, in the Mt Cotton soil only. The greatest shoot and root dry weights were achieved by plants grown in the higher P adsorbing Palmwoods soil fertilised with RP at P rates of 30-184 g m(-3). Caustis plants grown in the Palmwoods soil had 2.3 times greater root dry weights than plants grown in the Mt Cotton soil irrespective of the P fertiliser type used. Caustis plants growing in Mt Cotton soil which did not receive P showed significantly lower shoot and root dry weight when compared to plants in the Palmwoods soil, probably due to the low initial bicarbonate-extractable P and the high buffering capacity of the Mt Cotton soil. The P concentration in shoots of Caustis fertilised with MCP at 184 g m(-3) was higher when grown in Mt Cotton soil (0.22%) than in the Palmwoods soil (0.15%). The P concentration was lower in the terminal ultimate branchlets (TUB); 0.15% for the Mt Cotton soil and 0.10% for the Palmwoods soil, suggesting that shoots would provide a more useful indicator of P toxicity than the TUB. It is interesting to speculate as to why plants in the Palmwoods soil showed greater root growth and fewer symptoms of P toxicity. This could be because the Palmwoods soil had the greater P adsorption capacity. These results indicate in ground production of Caustis cut foliage will require careful management of P nutrition and understanding of the complex soil/plant interactions associated with the acquisition of P. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo and molecular dynamics simulations and neutron scattering experiments are used to study the adsorption and diffusion of hydrogen and deuterium in zeolite Rho in the temperature range of 30-150 K. In the molecular simulations, quantum effects are incorporated via the Feynman-Hibbs variational approach. We suggest a new set of potential parameters for hydrogen, which can be used when Feynman-Hibbs variational approach is used for quantum corrections. The dynamic properties obtained from molecular dynamics simulations are in excellent agreement with the experimental results and show significant quantum effects on the transport at very low temperature. The molecular dynamics simulation results show that the quantum effect is very sensitive to pore dimensions and under suitable conditions can lead to a reverse kinetic molecular sieving with deuterium diffusing faster than hydrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the adsorption behavior of coal-bed gases, mainly under supercritical high-pressure conditions, is important for optimum design of production processes to recover coal-bed methane and to sequester CO2 in coal-beds. Here, we compare the two most rigorous adsorption methods based on the statistical mechanics approach, which are Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) simulation, for single and binary mixtures of methane and carbon dioxide in slit-shaped pores ranging from around 0.75 to 7.5 nm in width, for pressure up to 300 bar, and temperature range of 308-348 K, as a preliminary study for the CO2 sequestration problem. For single component adsorption, the isotherms generated by DFT, especially for CO2, do not match well with GCMC calculation, and simulation is subsequently pursued here to investigate the binary mixture adsorption. For binary adsorption, upon increase of pressure, the selectivity of carbon dioxide relative to methane in a binary mixture initially increases to a maximum value, and subsequently drops before attaining a constant value at pressures higher than 300 bar. While the selectivity increases with temperature in the initial pressure-sensitive region, the constant high-pressure value is also temperature independent. Optimum selectivity at any temperature is attained at a pressure of 90-100 bar at low bulk mole fraction of CO2, decreasing to approximately 35 bar at high bulk mole fractions. (c) 2005 American Institute of Chemical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GCMC simulations are applied to the adsorption of sub-critical methanol and ethanol on graphitized carbon black at 300 K. The carbon black was modelled both with and without carbonyl functional groups. Large differences are seen between the amounts adsorbed for different carbonyl configurations at low pressure prior to monolayer coverage. Once a monolayer has been formed on the carbon black, the adsorption behaviour is similar between the model surfaces with and without functional groups. Simulation isotherms for the case of low carbonyl concentrations or no carbonyls are qualitatively similar to the few experimental isotherms available in the literature for methanol and ethanol adsorption on highly graphitized carbon black. Isosteric heats and adsorbed phase heat capacities are shown to be very sensitive to carbonyl configurations. A maximum is observed in the adsorbed phase heat capacity of the alcohols for all simulations but is unrealistically high for the case of a plain graphite surface. The addition of carbonyls to the surface greatly reduces this maximum and approaches experimental data with carbonyl concentration as low as 0.09 carbonyls/nm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of Lennard-Jones fluids (argon and nitrogen) onto a graphitized thermal carbon black surface was studied with a Grand Canonical Monte Carlo Simulation (GCMC). The surface was assumed to be finite in length and composed of three graphene layers. When the GCMC simulation was used to describe adsorption on a graphite surface, an over-prediction of the isotherm was consistently observed in the pressure regions where the first and second layers are formed. To remove this over-prediction, surface mediation was accounted for to reduce the fluid-fluid interaction. Do and co-workers have introduced the so-called surface-mediation damping factor to correct the over-prediction for the case of a graphite surface of infinite extent, and this approach has yielded a good description of the adsorption isotherm. In this paper, the effects of the finite size of the graphene layer on the adsorption isotherm and how these would affect the extent of the surface mediation were studied. It was found that this finite-surface model provides a better description of the experimental data for graphitized thermal carbon black of high surface area (i.e. small crystallite size) while the infinite- surface model describes data for carbon black of very low surface area (i.e. large crystallite size).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the interaction of ethylene and ethane with a Cu-tricarboxylate complex and show that at low loadings the lighter molecule has a higher binding energy as a result of an increased interaction with the framework Cu and stronger hydrogen bonding with the basic framework oxygens. This leads to selective adsorption of ethylene by a factor of about 2 at low pressure, which is overcome by the stronger van der Waals interaction of ethane at high loadings, explaining recent literature data. The results suggest the possibility of separation of light hydrocarbons at low pressures or in trace amounts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several procedures for calculating the heat of adsorption from Monte Carlo simulations for a heterogeneous adsorbent are presented. Simulations have been performed to generate isotherms for nitrogen at 77 K and methane at 273.15 K in graphitic slit pores of various widths. The procedures were then applied to calculate the heat of adsorption of an activated carbon with an arbitrary pore size distribution. The consistency of the different procedures shows them to be correct in calculating interaction energy contributions to the heat of adsorption. The currently favored procedure for this type of calculation, from the literature, is shown to be incorrect and in serious error when calculating the heat of adsorption of activated carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption isotherms of methane and carbon dioxide on two kinds of Australian coals have been measured at three temperatures up to pressures of 20 MPa. The adsorption behavior is described by three isotherm equations: extended three-parameter, Langmuir, and Toth. Among these, the Toth equation is found to be the most suitable, yielding the most realistic values of pore volume of the coals and the adsorbed phase density. Also, the surface area of coals obtained from CO2 adsorption at 273 K is found to be the meaningful parameter which captures the CO2 adsorption capacity. A maximum in the excess amount adsorbed of each gas appears at a lower pressure with a decrease in temperature. For carbon dioxide, after the appearance of the maximum, an inflection point in the excess amount adsorbed is observed close to the critical density at each temperature, indicating that the decrease in the gas-phase density change with pressure influences the behavior of the excess amount adsorbed. In the context of CO2 sequestration, it is found that CO2 injection pressures of lower than 10 MPa may be desirable for the CH4 recovery process and CO2-holding capacity.