998 resultados para DIFFUSION GEOMETRY
Resumo:
We have developed a PW (0.5 ps/500J) laser system to demonstrate fast heating of imploded core plasmas using a hollow cone shell target. Significant enhancement of thermal neutron yield has been realized with PW-laser heating, confirming that the high heating efficiency is maintained as the short-pulse laser power is substantially increased to a value nearly equivalent to the ignition condition. It appears that the efficient heating is realized by the guiding of the PW laser pulse energy within the hollow cone and by self-organized relativistic electron transport. Based on the experimental results, we are developing a 10kJ-PW laser system to study the fast heating physics of high-density plasmas at an ignition-equivalent temperature.
Resumo:
We present a study on the transport properties through conductivity (s), viscosity (?), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids—pyrrolidinium hydrogen sulfate, [Pyrr][HSO4], and pyrrolidinium trifluoroacetate, [Pyrr][CF3COO]—and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes–Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H3O+. This water weight fraction appears to be the solvation limit of the H+ ions by water molecules in these two PILs solutions. However, [Pyrr][HSO4] and [Pyrr][CF3COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF3COO], ?, s, D, and the attractive potential, Epot, between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO4], the strong H-bond between the HSO4– anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm–1 for water weight fraction close to 60% at 298 K.
Resumo:
A conceptual model is described for generating distributions of grazing animals, according to their searching behavior, to investigate the mechanisms animals may use to achieve their distributions. The model simulates behaviors ranging from random diffusion, through taxis and cognitively aided navigation (i.e., using memory), to the optimization extreme of the Ideal Free Distribution. These behaviors are generated from simulation of biased diffusion that operates at multiple scales simultaneously, formalizing ideas of multiple-scale foraging behavior. It uses probabilistic bias to represent decisions, allowing multiple search goals to be combined (e.g., foraging and social goals) and the representation of suboptimal behavior. By allowing bias to arise at multiple scales within the environment, each weighted relative to the others, the model can represent different scales of simultaneous decision-making and scale-dependent behavior. The model also allows different constraints to be applied to the animal's ability (e.g., applying food-patch accessibility and information limits). Simulations show that foraging-decision randomness and spatial scale of decision bias have potentially profound effects on both animal intake rate and the distribution of resources in the environment. Spatial variograms show that foraging strategies can differentially change the spatial pattern of resource abundance in the environment to one characteristic of the foraging strategy.</
Resumo:
Off-design performance is of key importance now in the design of automotive turbocharger turbines. Due to automotive drive cycles, a turbine that can extract more energy at high pressure ratios and lower rotational speeds is desirable. Typically a radial turbine provides peak efficiency at U/C values of 0.7, but at high pressure ratios and low rotational speeds, the U/C value will be low and the rotor will experience high values of positive incidence at the inlet. The positive incidence causes high blade loading resulting in additional tip leakage flow in the rotor as well as flow separation on the suction surface of the blade. An experimental assessment has been performed on a scaled automotive VGS (variable geometry system). Three different stator vane positions have been analyzed: minimum, 25%, and maximum flow position. The first tests were to establish whether positioning the endwall clearance on the hub or shroud side of the stator vanes produced a different impact on turbine efficiency. Following this, a back swept rotor was tested to establish the potential gains to be achieved during off-design operation. A single passage CFD model of the test rig was developed and used to provide information on the flow features affecting performance in both the stator vanes and turbine. It was seen that off-design performance was improved by implementing clearance on the hub side of the stator vanes rather than on the shroud side. Through CFD analysis and tests, it was seen that two leakage vortices form, one at the leading edge and one after the spindle of the stator vane. The vortices affect the flow angle at the inlet to the rotor, in the hub region. The flow angle is shifted to more negative values of incidence, which is beneficial at the off-design conditions but detrimental at the design point. The back swept rotor was tested with the hub side stator vane clearance configuration. The efficiency and MFR were increased at the minimum and 25% stator vane position. At the design point, the efficiency and MFR were decreased. The CFD investigation showed that the incidence angle was improved at the off-design conditions for the back swept rotor. This reduction in the positive incidence angle, along with the improvement caused by the stator vane tip leakage flow, reduced flow separation on the suction surface of the rotor. At the design point, both the tip leakage flow of the stator vanes and the back swept blade angle caused flow separation on the pressure surface of the rotor. This resulted in additional blockage at the throat of the rotor reducing MFR and efficiency.
Resumo:
A new nonlinear theory for the perpendicular transport of charged particles is presented. This approach is based on an improved nonlinear treatment of field line random walk in combination with a generalized compound diffusion model. The generalized compound diffusion model is much more systematic and reliable, in comparison to previous theories. Furthermore, the new theory shows remarkably good agreement with test-particle simulations and heliospheric observations.
Kinetic Theory and diffusion coefficients for plasma in a uniform magnetic field (Coulomb potential)
Resumo:
The importance of accurately measuring gas diffusivity in porous materials has led to a number of methods being developed. In this study the Temporal Analysis of Products (TAP) reactor and Flux Response Technology (FRT) have been used to examine the diffusivity in the washcoat supported on cordierite monoliths. Herein, the molecular diffusion of propane within four monoliths with differently prepared alumina/CeZrOx washcoats was investigated as a function of temperature. Moment-based analysis of the observed TAP responses led to the calculation of the apparent intermediate gas constant, Kp, that characterises adsorption into the mesoporous network and apparent time delay, tapp, that characterises residence time in the mesoporous network. Additionally, FRT has been successfully adapted as an extensive in situ perturbation technique in measuring intraphase diffusion coefficients in the washcoats of the same four monolith samples. The diffusion coefficients obtained by moment-based analysis of TAP responses are larger than the coefficients determined by zero length column (ZLC) analysis of flux response profiles with measured values of the same monolith samples between 20 and 100 °C ranging from 2–5×10-9 m2 s-1 to 4–8×10-10 m2 s-1, respectively. The TAP and FRT data, therefore, provide a range of the lower and upper limits of diffusivity, respectively. The reported activation energies and diffusivities clearly correlate with the difference in the washcoat structure of different monolith samples.
Resumo:
The long-term success of arterial bypass grafting with autologous saphenous veins is limited by neointimal hyperplasia (NIH), which seemingly develops preferentially at sites where hydrodynamic wall shear is low. Placement of a loose-fitting, porous stent around end-to-end, or end-to-side, autologous saphenous vein grafts on the porcine common carotid artery has been found significantly to reduce NIH, but the mechanism is unclear. In a preliminary study, we implanted autologous saphenous vein grafts bilaterally on the common carotid arteries of pigs, placing a stent around one graft and leaving the contralateral graft unstented. At sacrifice 1 month post implantation, the grafts were pressure fixed in situ and resin casts were made. Unstented graft geometry was highly irregular, with non-uniform dilatation, substantial axial lengthening, curvature, kinking, and possible long-pitch helical distortion. In contrast, stented grafts showed no major dilatation, lengthening or curvature, but there was commonly fine corrugation, occasional slight kinking or narrowing of segments, and possible long-pitch helical distortion. Axial growth of grafts against effectively tethered anastomoses could account for these changes. CFD studies are planned, using 3D MR reconstructions, on the effects of graft geometry on the flow. Abnormality of the flow could favour the development of vascular pathology, including NIH.