969 resultados para DGGE (denaturating gradient gel electrophoresis)
Resumo:
In recent years, several surveys have highlighted the presence of the rodent carcinogen furan in a variety of food items. Even though the evidence of carcinogenicity of furan is unequivocal, the underlying mechanism has not been fully elucidated. In particular, the role of genotoxicity in furan carcinogenicity is still not clear, even though this information is considered pivotal for the assessment of the risk posed by the presence of low doses of furan in food. In this work, the genotoxic potential of furan in vivo has been investigated in mice, under exposure conditions similar to those associated with cancer onset in the National Toxicology Program long-term bioassay. To this aim, male B6C3F1 mice were treated by gavage for 4 weeks with 2, 4, 8 and 15 mg furan/kg b.w./day. Spleen was selected as the target organ for genotoxicity assessment, in view of the capability of quiescent splenocytes to accumulate DNA damage induced by repeat dose exposure. The induction of primary DNA damage in splenocytes was evaluated by alkaline single-cell gel electrophoresis (comet assay) and by the immunofluorescence detection of foci of phosphorylated histone H2AX (gamma-H2AX). The presence of cross-links was probed in a modified comet assay, in which cells were irradiated in vitro with gamma-rays before electrophoresis. Chromosome damage was quantitated through the detection of micronuclei in mitogen-stimulated splenocytes using the cytokinesis-block method. Micronucleus induction was also assessed with a modified protocol, using the repair inhibitor 1-beta-arabinofuranosyl-cytosine to convert single-strand breaks in micronuclei. The results obtained show a significant (P < 0.01) increase of gamma-H2AX foci in mitogen-stimulated splenocytes of mice treated with 8 and 15 mg furan/kg b.w. and a statistically significant (P < 0.001) increases of micronuclei in binucleated splenocytes cultured in vitro. Conversely, no effect of in vivo exposure to furan was observed when freshly isolated quiescent splenocytes were analysed by immunofluorescence and in comet assays, both with standard and radiation-modified protocols. These results indicate that the in vivo exposure to furan gives rise to pre-mutagenic DNA damage in resting splenocytes, which remains undetectable until it is converted in frank lesions during the S-phase upon mitogen stimulation. The resulting DNA strand breaks are visualized by the increase in gamma-H2AX foci and may originate micronuclei at the subsequent mitosis.
Resumo:
Pergularain e I, a cysteine protease with thrombin-like activity, was purified by ion exchange chromatography from the latex of Pergularia extensa. Its homogeneity was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), native PAGE and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of pergularain e I by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) was found to be 23.356 kDa and the N-terminal sequence is L-P-H-D-V-E. Pergularain e I is a glycoprotein containing approximately 20% of carbohydrate. Pergularain e I constituted 6.7% of the total protein with a specific activity of 9.5 units/mg/min with a 2.11-fold increased purity. Proteolytic activity of the pergularain e I was completely inhibited by iodoacetic acid (IAA). Pergularain e I exhibited procoagulant activity with citrated plasma and fibrinogen similar to thrombin. Pergularain e I increases the absorbance of fibrinogen solution in concentration-dependent and time-dependent manner. At 10 microg concentration, an absorbance of 0.48 was reached within 10 min of incubation time. Similar absorbance was observed when 0.2 NIH units of thrombin were used. Thrombin-like activity of pergularain e I is because of the selective hydrolysis of A alpha and B beta chains of fibrinogen and gamma-chain was observed to be insusceptible to hydrolysis. Molecular masses of the two peptide fragments released from fibrinogen due to the hydrolysis by pergularain e I at 5-min incubation time were found to be 1537.21 and 1553.29 and were in close agreement with the molecular masses of 16 amino acid sequence of fibrinopeptide A and 14 amino acid sequence of fibrinopeptide B, respectively. Prolonged fibrinogen-pergularain e I incubation releases additional peptides and their sequence comparison of molecular masses of the released peptides suggested that pergularain e I hydrolyzes specifically after arginine residues.
Resumo:
The diagnostic yield of prosthetic joint-associated infection is hampered by the phenotypic change of bacteria into a sessile and resistant form, also called biofilm. With sonication, adherent bacteria can be dislodged from the prosthesis. Species identification may be difficult because of their variations in phenotypic appearance and biochemical reaction. We have studied the phenotypic, genotypic, and biochemical properties of Escherichia coli variants isolated from a periprosthetic joint infection. The strains were collected from synovial fluid, periprosthetic tissue, and fluid from the explanted and sonicated prosthesis. Isolates from synovial fluid revealed a normal phenotype, whereas a few variants from periprosthetic tissue and all isolates from sonication fluid showed different morphological features (including small-colony variants). All isolates from sonication fluid were beta-galactosidase negative and nonmotile; most were indole negative. Because of further variations in biochemical properties, species identification was false or not possible in 50% of the isolates included in this study. In contrast to normal phenotypes, variants were resistant to aminoglycosides. Typing of the isolates using pulsed-field gel electrophoresis yielded nonidentical banding patterns, but all strains were assigned to the same clonal origin when compared with 207 unrelated E. coli isolates. The bacteria were repeatedly passaged on culture media and reanalyzed. Thereafter, most variants reverted to normal phenotype and regained their motility and certain biochemical properties. In addition, some variants displayed aminoglycoside susceptibility after reversion. Sonication of an explanted prosthesis allows insight into the lifestyle of bacteria in biofilms. Since sonication fluid also reveals dislodged sessile forms, species identification of such variants may be misleading.
Resumo:
Background Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein. An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the Chelonus lineage. Venom components specific to C. inanitus included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins. Conclusions The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of C. inanitus appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.
Resumo:
Carotenoid-based sexual ornaments are hypothesized to be reliable signals of male quality, based on an allocation trade-off between the use of carotenoids as pigments and their use in antioxidant defence against reactive oxygen species. Carotenoids appear to be poor antioxidants in vivo, however, and it is not clear whether variation in ornament expression is correlated with measures of oxidative stress (OXS) under natural conditions. We used single-cell gel electrophoresis to assay oxidative damage to erythrocyte DNA in the common yellowthroat (Geothlypis trichas), a sexually dichromatic warbler in which sexual selection favours components of the males’ yellow ‘bib’. We found that the level of DNA damage sustained by males predicted their overwinter survivorship and was reflected in the quality of their plumage. Males with brighter yellow bibs showed lower levels of DNA damage, both during the year the plumage was sampled (such that yellow brightness signalled current OXS) and during the previous year (such that yellow brightness signalled past OXS). We suggest that carotenoid-based ornaments can convey information about OXS to prospective mates and that further work exploring the proximate mechanism(s) linking OXS to coloration is warranted.
Resumo:
Seeking biomarkers reflecting disease development in cystic echinococcosis (CE), we used a proteomic approach linked to immunological characterisation for the identification of respective antigens. Two-dimensional gel electrophoresis (2-DE) of sheep hydatid fluid, followed by immunoblot analysis (IB) with sera from patients with distinct phases of disease, enabled us to identify by mass spectrometry heat shock protein 20 (HSP20) as a potential marker of active CE. Using IB, antibodies specific to the 34 kDa band of HSP20 were detected in sera from 61/95 (64%) patients with CE, but not in sera from healthy subjects. IB revealed anti-HSP20 antibodies in a higher percentage of sera from patients with active disease than in sera from patients with inactive disease (81 vs. 24%; P = 10(-4)). These primary results were confirmed in a long-term follow-up study after pharmacological and surgical treatment. Herewith anti-HSP20 antibody levels significantly decreased over the course of treatment in sera from patients with cured disease, relative to sera from patients with progressive disease (P = 0.017). Thus, during CE, a comprehensive strategy of proteomic identification combined with immunological validation represents a promising approach for the identification of biomarkers useful for the prognostic assessment of treatment of CE patients.
Resumo:
Linezolid (LZD)-resistant Staphylococcus aureus (LRSA) isolates were monitored from 2000 to 2009 in Cleveland, OH. LRSA first emerged in 2004 only in cystic fibrosis (CF) patients, with 11 LRSA-infected CF patients being identified by 2009. LRSA was isolated from 8 of 77 CF patients with S. aureus respiratory tract infection treated with LZD from 2000 to 2006. Analysis of clinical data showed that the 8 CF patients with LRSA received more LZD courses (18.8 versus 5.9; P = 0.001) for a longer duration (546.5 versus 211.9 days; P < 0.001) and had extended periods of exposure to LZD (83.1 versus 30.1 days/year; P < 0.001) than the 69 with LZD-susceptible isolates. Five LRSA isolates included in the clinical analysis (2000 to 2006) and three collected in 2009 were available for molecular studies. Genotyping by repetitive extrapalindromic PCR and pulsed-field gel electrophoresis revealed that seven of these eight LRSA strains from unique patients were genetically similar. By multilocus sequence typing, all LRSA isolates were included in clonal complex 5 (seven of sequence type 5 [ST5] and one of ST1788, a new single-locus variant of ST5). However, seven different variants were identified by spa typing. According to the Escherichia coli numbering system, seven LRSA isolates contained a G2576T mutation (G2603T, S. aureus numbering) in one to four of the five copies of domain V of the 23S rRNA genes. One strain also contained a mutation (C2461T, E. coli numbering) not previously reported. Two strains, including one without domain V mutations, possessed single amino acid substitutions (Gly152Asp or Gly139Arg) in the ribosomal protein L3 of the peptidyltransferase center, substitutions not previously reported in clinical isolates. Emergence of LRSA is a serious concern for CF patients who undergo prolonged courses of LZD therapy.
Resumo:
During the past decade, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae have become a matter of great concern in human medicine. ESBL-producing strains are found in the community, not just in hospital-associated patients, which raises a question about possible reservoirs. Recent studies describe the occurrence of ESBL-producing Enterobacteriaceae in meat, fish, and raw milk; therefore, the impact of food animals as reservoirs for and disseminators of such strains into the food production chain must be assessed. In this pilot study, fecal samples of 59 pigs and 64 cattle were investigated to determine the occurrence of ESBL-producing Enterobacteriaceae in farm animals at slaughter in Switzerland. Presumptive-positive colonies on Brilliance ESBL agar were subjected to identification and antibiotic susceptibility testing including the disc diffusion method and E-test ESBL strips. As many as 15.2% of the porcine and 17.1% of the bovine samples, predominantly from calves, yielded ESBL producers. Of the 21 isolated strains, 20 were Escherichia coli, and one was Citrobacter youngae. PCR analysis revealed that 18 strains including C. youngae produced CTX-M group 1 ESBLs, and three strains carried genes encoding for CTX-M group 9 enzymes. In addition, eight isolates were PCR positive for TEM beta-lactamase, but no bla(SHV) genes were detected. Pulsed-field gel electrophoresis showed a high genetic diversity within the strains. The relatively high rates of occurrence of ESBLproducing strains in food animals and the high genetic diversity among these strains indicate that there is an established reservoir of these organisms in farm animals. Further studies are necessary to assess future trends.
Resumo:
Semen collected from clinically healthy bulls at an artificial insemination centre was examined for bacterial diversity. While bacteria that are normally present in the common flora of bovine semen were absent, such as Mycoplasma sp., Proteus sp. and Corynebacterium sp., all semen samples contained an unusually high number of Pseudomonas aeruginosa strains. Analysis via pulsed field gel electrophoresis demonstrated that one particular P. aeruginosa strain, present in a sealed bottle of lubricant, was widespread in bull semen. This strain was shown to secrete substances that inhibited both the growth of bacteria constituting the normal bull sperm flora and the motility of spermatozoa in vitro. This study demonstrated that commercially available lubricants might contain bacteria that can spread amongst breeding bulls and affect the quality of semen. Bacteriological controls and species' identification are necessary at several production levels, including lubricants and extenders, to ensure high semen quality and avoid the spread of pathogens.
Resumo:
Staphylococcus rostri is a newly described Staphylococcus species that is present in the nasal cavity of healthy pigs. Out of the 225 pigs tested at slaughterhouse, 46.7% carried the new species alone and 22% in combination with Staphylococcus aureus. An antibiotic resistance profile was determined for S. rostri and compared to that of S. aureus isolated from the same pig. Resistance to tetracycline specified by tet(M), tet(K) and tet(L), streptomycin (str(pS194)), penicillin (blaZ), trimethoprim (dfr(G)), and erythromycin and clindamycin (erm genes), were found in both species; however, with the exception of streptomycin and trimethoprim, resistance was higher in S. aureus. S. rostri isolates display very low genetic diversity as demonstrated by pulsed-field gel electrophoresis, which generated two major clusters. Several clonal complexes (CC1, CC5, CC9, CC30 and CC398) were identified in S. aureus with CC 9 and CC 398 being the most frequent. Our study gives the first overview of the distribution, genetic relatedness, and resistance profile of one coagulase-negative Staphylococcus species that is commonly present in the nares of healthy pigs in Switzerland, and shows that S. rostri may harbor resistance genes associated with transferable elements like Tn916.
Resumo:
Cardiolipin is important for bacterial and mitochondrial stability and function. The final step in cardiolipin biosynthesis is catalyzed by cardiolipin synthase and differs mechanistically between prokaryotes and eukaryotes. To study the importance of cardiolipin synthesis for mitochondrial integrity, membrane protein complex formation, and cell proliferation in the human and animal pathogenic protozoan parasite, Trypanosoma brucei, we generated conditional cardiolipin synthase-knockout parasites. We found that cardiolipin formation in T. brucei procyclic forms is catalyzed by a bacterial-type cardiolipin synthase, providing experimental evidence for a prokaryotic-type cardiolipin synthase in a eukaryotic organism. Ablation of enzyme expression resulted in inhibition of de novo cardiolipin synthesis, reduction in cellular cardiolipin levels, alterations in mitochondrial morphology and function, and parasite death in culture. By using immunofluorescence microscopy and blue-native gel electrophoresis, cardiolipin synthase was shown to colocalize with inner mitochondrial membrane proteins and to be part of a large protein complex. During depletion of cardiolipin synthase, the levels of cytochrome oxidase subunit IV and cytochrome c1, reflecting mitochondrial respiratory complexes IV and III, respectively, decreased progressively.
Resumo:
The herd prevalence of third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec) was determined for broilers (25.0% [95% confidence interval (CI) 17.6-33.7%]), pigs (3.3% [(95% CI 0.4-11.5%]), and cattle (3.9% [95% CI 0.5-13.5%]), using a sampling strategy that was representative of the livestock population slaughtered in Switzerland between October 2010 and April 2011. The 3GC-R-Ec isolates were characterized by the measurement of the MICs of various antibiotics, microarray analyses, analytical isoelectric focusing, polymerase chain reaction and DNA sequencing for bla genes, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing. CMY-2 (n = 12), CTX-M-1 (n = 11), SHV-12 (n = 5), TEM-52 (n = 3), CTX-M-15 (n = 2), and CTX-M-3 (n = 1) producers were found. The majority of CMY-2 producers fell into 1 PFGE cluster, which predominantly contained ST61, whereas the CTX-M types were carried by heterogeneous clones of E. coli, as shown by the numerous PFGE profiles and STs that were found. This is the first national Swiss study that focuses on the spread of 3GC-R Enterobacteriaceae among slaughtered animals.
Resumo:
The epidemiology of an enrofloxacin-resistant Escherichia coli clone was investigated during two separate outbreaks of colibacillosis in the Danish broiler production. In total five flocks were reported affected by the outbreaks. Recorded first-week mortalities were in the range of 1.7-12.7%. The clone was first isolated from dead broilers and subsequently demonstrated in samples from associated hatchers and the parent flock with its embryonated eggs, suggesting a vertical transmission from the parents. The second outbreak involved two broiler flocks unrelated to the affected flocks from the first outbreak. However, the clone could not be demonstrated in the associated parent flock. Furthermore, samplings from grand-parent flocks were negative for the outbreak clone. The clonality was evaluated by plasmid profiling and pulsed-field gel electrophoresis. None of the recognized virulence factors were demonstrated in the outbreak clone by microarray and PCR assay. The molecular background for the fluoroquinolone-resistance was investigated and point mutations in gyrA and parC leading to amino-acid substitutions in quinolone-resistance determining regions of GyrA and ParC were demonstrated. Vertical transmission of enrofloxacin-resistant E. coli from healthy parents resulting in high first-week mortality in the offspring illustrates the potential of the emergence and spreading of fluoroquinolone-resistant bacteria in animal husbandry, even though the use of fluoroquinolones is restricted.
Resumo:
Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined collagen-soldering matrix membranes for special laser soldering applications.
Resumo:
Sickle red blood cell (SRBC)-endothelial adhesion plays a central role in sickle cell disease (SCD)-related vaso-occlusion. As unusually large von Willebrand factor (ULVWF) multimers mediate SRBC-endothelial adhesion, we investigated the activity of ADAMTS13, the metalloprotease responsible for cleaving ULVWF multimers, in SCD. ADAMTS13 activity was determined using a quantitative immunoblotting assay. VWF:Ag and VWF:RCo were determined using commercial assays. The high-molecular-weight VWF multimer percentage was determined by employing gel electrophoresis. ADAMTS13 activity was similar among asymptomatic patients (n = 8), patients at presentation with a painful crisis (n = 23), and healthy controls. ADAMTS13/VWF:Ag ratios were lower in patients compared to healthy HbAA controls, with the lowest values at presentation with a painful crisis (P = 0.02). Division of samples in those with VWF:RCo/VWF:Ag ratios < 0.70 and those with ratios >or= 0.70 revealed significantly more samples with ratios >or= 0.70 (P = 0.01) collected during painful crises. ULVWF multimers were detected in 6 patient samples and in 1 control sample. ADAMTS13/VWF:Ag ratios were inversely related to the duration of symptoms at presentation with an acute vaso-occlusive event (r(s)-0.67, P = 0.002). Although SCD is characterized by elevated VWF:Ag levels, no severe ADAMTS13 deficiency was detected in our patients.