973 resultados para DELTA-C-13


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural characterization by NMR spectroscopy and DFT calculations was performed for two dimeric naptho-gamma-pyrones, the polyketides Aurasperone A and Fonsecinone A. Experimental data ((13)C NMR chemical shifts and interatomic geometries) were found to be in reasonable agreement with theoretical ones, obtained at B3LYP level for three different basis sets (6-31G/6-31G(d)/6-31G(d,p)). Additionally, the dipolar moments calculation allowed explaining the different solubility for these molecules. The (13)C NMR theoretical chemical shifts were calculated with the GIAO method and the solvent effects were taken into account by means of the PCM approximation. In this work, the DFT/GIAO methodology shows to be a reliable tool in the assignment of experimental NMR chemical shifts of similar molecules. (C) 2008 Wiley Periodicals, Inc. Int J Quantum Chem 108: 2408-2416, 2008.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die Kontaktihibition, d.h. die Zell-Zell-Kontakt-vermittelte Proliferationskontrolle, stellt einen fundamentalen Mechanismus zur Aufrechterhaltung der Homöostase in vitro und in vivo dar. So stellen in der Zellkultur nicht-transformierte Zellen in der Regel ihr Wachstum ein, sobald sie einen einschichtigen Zellrasen gebildet haben. Umgekehrt zeichnen sich transformierte Zellen durch einen Verlust der Kontaktinhibition aus. Sie wachsen nach Erreichen eines konfluenten Zellrasens mehrschichtig weiter, und es kommt zur Ausbildung charakteristischer Foci. In dieser Arbeit konnte nachgewiesen werden, dass die Proteinkinase C - delta eine wichtige Funktion in der Regulation der Zytoarchitektur humaner Keratinozyten besitzt und zugleich über Modulation der Zell-Zelladhäsion, insbesondere über Cadherin und Catenin, Einfluss nimmt.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantitative branch determination in polyolefins by solid- and melt-state 13C NMR has been investigated. Both methods were optimised toward sensitivity per unit time. While solid-state NMR was shown to give quick albeit only qualitative results, melt-state NMR allowed highly time efficient accurate branch quantification. Comparison of spectra obtained using spectrometers operating at 300, 500 and 700 MHz 1H Larmor frequency, with 4 and 7~mm MAS probeheads, showed that the best sensitivity was achieved at 500 MHz using a 7 mm 13C-1H optimised high temperature probehead. For materials available in large quantities, static melt-state NMR, using large diameter detection coils and high coil filling at 300 MHz, was shown to produce comparable results to melt-state MAS measurements in less time. While the use of J-coupling mediated polarisation transfer techniques was shown to be possible, direct polarisation via single-pulse excitation proved to be more suitable for branch quantification in the melt-state. Artificial line broadening, introduced by FID truncation, was able to be reduced by the use of π pulse-train heteronuclear dipolar decoupling. This decoupling method, when combined with an extended duty-cycle, allowed for significant improvement in resolution. Standard setup, processing and analysis techniques were developed to minimise systematic errors contributing to the measured branch contents. The final optimised melt-state MAS NMR method was shown to allow time efficient quantification of comonomer content and distribution in both polyethylene- and polypropylene-co-α-olefins. The sensitivity of the technique was demonstrated by quantifying branch concentrations of 8 branches per 100,000 CH2 for an industrial ‘linear’ polyethylene in only 13 hours. Even lower degrees of 3–8 long-chain branches per 100,000 carbons were able to be estimated in just 24 hours for a series of γ-irradiated polypropylene homopolymers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glycogen is a major substrate in energy metabolism and particularly important to prevent hypoglycemia in pathologies of glucose homeostasis such as type 1 diabetes mellitus (T1DM). (13) C-MRS is increasingly used to determine glycogen in skeletal muscle and liver non-invasively; however, the low signal-to-noise ratio leads to long acquisition times, particularly when glycogen levels are determined before and after interventions. In order to ease the requirements for the subjects and to avoid systematic effects of the lengthy examination, we evaluated if a standardized preparation period would allow us to shift the baseline (pre-intervention) experiments to a preceding day. Based on natural abundance (13) C-MRS on a clinical 3 T MR system the present study investigated the test-retest reliability of glycogen measurements in patients with T1DM and matched controls (n = 10 each group) in quadriceps muscle and liver. Prior to the MR examination, participants followed a standardized diet and avoided strenuous exercise for two days. The average coefficient of variation (CV) of myocellular glycogen levels was 9.7% in patients with T1DM compared with 6.6% in controls after a 2 week period, while hepatic glycogen variability was 13.3% in patients with T1DM and 14.6% in controls. For comparison, a single-session test-retest variability in four healthy volunteers resulted in 9.5% for skeletal muscle and 14.3% for liver. Glycogen levels in muscle and liver were not statistically different between test and retest, except for hepatic glycogen, which decreased in T1DM patients in the retest examination, but without an increase of the group distribution. Since the CVs of glycogen levels determined in a "single session" versus "within weeks" are comparable, we conclude that the major source of uncertainty is the methodological error and that physiological variations can be minimized by a pre-study standardization. For hepatic glycogen examinations, familiarization sessions (MR and potentially strenuous interventions) are recommended. Copyright © 2016 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.