951 resultados para Cytokines -- secretion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DC) are the main producers of the cytokine IL-12p70, through which they play a direct role in the development of IFN-gamma-secreting Th1 cells, costimulation of CTL differentiation and NK-cell activation. In contrast, IL-10, which is also produced by DC, negatively regulates IL-12 production. IL-12p70 production varies widely between individuals, and several polymorphisms in the gene encoding IL-12p40 (IL12B) have been identified that influence susceptibility and severity of infectious, autoimmune and neoplastic disease. Here we show that polymorphisms not only of IL12B, but also in the IL10 promoter, influence IL-12p70 secretion by monocyte-derived DC in response to LPS. Although IL12B promoter homozygotes were prone to making more IL-12p70, presence of the IL10 high genotype restricted IL-12p70 production in these individuals. These observations provide a further genetic control of IL-12p70 regulation and emphasize the complexity of production of this cytokine. They also suggest genotypes that might influence the outcome of DC immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As exemplified by aborted calcified liver lesions commonly found in patients from endemic areas, Echinococcus multilocularis metacestodes develop only in a minority of individuals exposed to infection with the papasite. Clinical research has disclosed some aspects of the survival strategy of E. multilocularis in human hosts. Clinical observations in liver transplantation and AIDS suggest that suppression of cellular/Th1related immunity increases disease severity. Most of the studies have stressed a role for CD8+ T cells and for Interleukin-10 in the development of tolerance. A spontaneous secretion of IL-10 by the PBMC seems to be the immunological hallmark of patients with progressive forms of alveolar echinococcosis (AE). IL-10-induced inhibition of effector macrophages, but also of antigen-presenting dendritic cells, may be operating and allowing parasite growth and survival. The genetic correlates of susceptibility to infection with E. multilocularis are clearer in humans than in the mouse model. A significant link between MHC polymorphism and clinical presentation of AE has been shown, and the spontaneous secretion of IL-10 in patients with a progressive AE is higher in patients with the HLA DR3+, DQ2+ haplotype. Clustering of cases in certain families, in communities otherwise exposed to similar risk factors, also points to immuno-genetic predisposition factors that may allow the larva to escape host immunity more easily. The first stage of larval development may be crucial in producing danger signals stimulating the initial production of cytokines. Therapeutic use of Interferon alpha is an attempt to foil the survival strategy of E. multilocularis. (C) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medically significant genus Chlamydia is a class of obligate intracellular bacterial pathogens that replicate within vacuoles in host eukaryotic cells termed inclusions. Chlamydia's developmental cycle involves two forms; an infectious extracellular form, known as an elementary body (EB), and a non-infectious form, known as the reticulate body (RB), that replicates inside the vacuoles of the host cells. The RB surface is covered in projections that are in intimate contact with the inclusion membrane. Late in the developmental cycle, these reticulate bodies differentiate into the elementary body form. In this paper, we present a hypothesis for the modulation of these developmental events involving the contact-dependent type III secretion (TTS) system. TTS surface projections mediate intimate contact between the RB and the inclusion membrane. Below a certain number of projections, detachment of the RB provides a signal for late differentiation of RB into EB. We use data and develop a mathematical model investigating this hypothesis. If the hypothesis proves to be accurate, then we have shown that increasing the number of inclusions per host cell will increase the number of infectious progeny EB until some optimal number of inclusions. For more inclusions than this optimum, the infectious yield is reduced because of spatial restrictions. We also predict that a reduction in the number of projections on the surface of the RB (and as early as possible during development) will significantly reduce the burst size of infectious EB particles. Many of the results predicted by the model can be tested experimentally and may lead to the identification of potential targets for drug design. © Society for Mathematical Biology 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence suggests that tissue transglutaminase (tTGase; type II) is externalized from cells, where it may play a key role in cell attachment and spreading and in the stabilization of the extracellular matrix (ECM) through protein cross-linking. However, the relationship between these different functions and the enzyme's mechanism of secretion is not fully understood. We have investigated the role of tTGase in cell migration using two stably transfected fibroblast cell lines in which expression of tTGase in its active and inactive (C277S mutant) states is inducible through the tetracycline-regulated system. Cells overexpressing both forms of tTGase showed increased cell attachment and decreased cell migration on fibronectin. Both forms of the enzyme could be detected on the cell surface, but only the clone overexpressing catalytically active tTGase deposited the enzyme into the ECM and cell growth medium. Cells overexpressing the inactive form of tTGase did not deposit the enzyme into the ECM or secrete it into the cell culture medium. Similar results were obtained when cells were transfected with tTGase mutated at Tyr(274) (Y274A), the proposed site for the cis,trans peptide bond, suggesting that tTGase activity and/or its tertiary conformation dependent on this bond may be essential for its externalization mechanism. These results indicate that tTGase regulates cell motility as a novel cell-surface adhesion protein rather than as a matrix-cross-linking enzyme. They also provide further important insights into the mechanism of externalization of the enzyme into the extracellular matrix.